PRELIMINARY FIRE/LIFE SAFETY ASSESSMENT
Task No. 7.1.1.2 (Submittal No. PH2.7.1.1.2.b14)

Prepared for:

Metro

Prepared by:
The Connector Partnership
777 S. Figueroa Street
Tenth Floor
Los Angeles, California 90017

Review Copy

<table>
<thead>
<tr>
<th>Date</th>
<th>Initials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Originator</td>
<td>01-25-12</td>
</tr>
<tr>
<td>Checkers</td>
<td>02-17-12</td>
</tr>
<tr>
<td>Back checker</td>
<td>02-22-12</td>
</tr>
<tr>
<td>Approved by (Pre-Final)</td>
<td>02-23-12</td>
</tr>
<tr>
<td>Approved by (Final)</td>
<td>05-15-12</td>
</tr>
</tbody>
</table>

May 22, 2012
Agency Release Record

Tom Eng
Corporate Safety Director
Metro

Lt. George Grein(Ret.)
Law Enforcement Liaison
Los Angeles County Sheriff’s Department
Transit Services Bureau

Michael Thomas
Fire Chief
City of Los Angeles Fire Department
Table of Contents

1.0 PURPOSE AND SCOPE .. 1-1

2.0 APPLICABLE CODES & STANDARDS .. 2-1
 2.1 California Codes .. 2-1
 2.2 NFPA 130 .. 2-1
 2.3 CBC Section 433, Fixed Guideway Transit Systems 2-2
 2.4 Metro Rail Design Criteria .. 2-2

3.0 STATION CONFIGURATIONS ... 3-1
 3.1 2nd/Hope Street Station .. 3-1
 3.2 2nd/Broadway Station ... 3-1
 3.3 1st/Central Station .. 3-1

4.0 USE AND OCCUPANCY CLASSIFICATIONS .. 4-1

5.0 CONSTRUCTION TYPE & FIRE-RESISTANCE RATINGS 5-1

6.0 FIRE SEPARATIONS .. 6-1

7.0 INTERIOR FINISHES ... 7-1

8.0 MEANS OF EGRESS .. 8-1
 8.1 Occupant Loads ... 8-1
 8.2 Open Stairs & Escalators as Egress Components 8-1
 8.3 Points of Safety .. 8-12
 8.3.1 Concourses as Points of Safety 8-12
 8.3.2 Exit Stairway Enclosures & Exit Passageways as Points of Safety 8-12
 8.4 Number & Capacity of Egress Elements: Public Areas of Stations 8-13
 8.4.1 NFPA 130 Prescriptive Platform Egress Requirements 8-13
 8.4.2 Other Prescriptive Egress Requirements 8-13
 8.4.3 Timed-Egress Analyses .. 8-13
 8.5 Means of Egress: Non-Public Service Areas of Stations 8-14
 8.5.1 Common Paths of Egress Travel 8-14
 8.5.2 Exit Access Travel Distances .. 8-15
 8.5.3 Dead End Corridors ... 8-15
 8.6 Maintenance of the Level of Exit Protection 8-15

9.0 ELEVATOR & ESCALATOR REQUIREMENTS .. 9-1

10.0 EMERGENCY VENTILATION/SMOKE CONTROL 10-1
 10.1 Station Emergency Ventilation System 10-1
 10.2 Enclosed Exit Stairways ... 10-12
Preliminary Fire/Life Safety Assessment

Table of Contents

11.0 FIRE ALARM & COMMUNICATIONS SYSTEMS .. 11-1
 11.1 Fire Detection & Alarm System ... 11-1
 11.2 Emergency Voice/Alarm Communication & Public Address System 11-1
 11.3 Blue Light Stations ... 11-12

12.0 FIRE SUPPRESSION SYSTEMS .. 12-1
 12.1 Automatic Sprinkler System .. 12-1
 12.2 Standpipe System ... 12-1

13.0 EMERGENCY POWER & LIGHTING .. 13-1

14.0 FIRE COMMAND CENTER / EMERGENCY MANAGEMENT PANEL 14-1

15.0 WIRING REQUIREMENTS .. 15-1

16.0 CONCLUSION & RECOMMENDATIONS ... 16-1

Appendices

APPENDIX A: PLATFORM OCCUPANT LOADS & EGRESS CALCULATIONS A-1
APPENDIX B: MEANS OF EGRESS DIAGRAMS ... B-1
1.0 PURPOSE AND SCOPE

The Regional Connector Transit Corridor Project (the Project) will connect the Metro Gold Line, Blue Line, and Expo Line of the Los Angeles County Metro Rail transit system. The Project includes three new underground transit stations:

- 2nd/ Hope Street Station
- 2nd/ Broadway Station
- 1st/ Central Avenue Station

This purpose of this report is to assess the compliance of the three underground stations of the Project with the fire/life safety provisions of the codes and standards listed in Section 2 of this report.

This report is based on the Preliminary Architectural Drawings for the Project dated December 20, 2011.

Accessible means of egress is addressed in the Preliminary Accessibility Assessment for the Project, dated December 20, 2011, and is therefore not addressed in this report. This report also does not address the fire/life safety of the tunnels and trainways of the Project, which will be addressed in a separate report.
2.0 APPLICABLE CODES & STANDARDS

The following are the principal codes and standards governing the fire/life safety requirements of the design of the stations of the Project.

2.1 California Codes

Title 24 of the California Code of Regulations (CCR) governs the design and construction of buildings, and associated facilities and equipment, and constitutes the California Building Standards Code, published by the California Building Standards Commission.

The codes of CCR Title 24, the California Building Standards Code, 2010 edition, that are relevant to the design of the stations of the Project include:

- Part 1 California Building Standards Administrative Code
- Part 2 California Building Code (CBC), based on the 2009 International Building Code
- Part 3 California Electrical Code, based on the 2008 National Electrical Code
- Part 4 California Mechanical Code, based on the 2009 Uniform Mechanical Code
- Part 5 California Plumbing Code, based on the 2009 Uniform Plumbing Code
- Part 6 California Energy Code
- Part 9 California Fire Code, based on the 2009 International Fire Code
- Part 11 California Green Building Standards Code (CALGreen Code)
- Part 12 California Reference Standards Code

City of Los Angeles Building Code, 2011 edition, and related City of Los Angeles codes
County of Los Angeles Building Code, 2011 edition, and related County of Los Angeles codes

For the purposes of this report, the CBC and not the City and County codes are cited.

Additional design and construction requirements are provided by the referenced standards of the above-listed codes.

2.2 NFPA 130

NFPA 130, Standard for Fixed Guideway Transit and Passenger Rail Systems, 2010 edition, is being used in conjunction with the California Building Code (CBC) and the other codes of CCR Title 24, the California Building Standards Code, for the design of the stations of the Project.

Therefore, the fire/life safety provisions of the CBC and the other codes of CCR Title 24 are superseded in this report by the corresponding applicable provisions of NFPA 130. Those relevant fire/life safety provisions of the CBC and the other codes of CCR Title 24, and their referenced standards, which are not addressed by NFPA 130, are considered in this report as remaining in effect.

For the purposes of this report, references in NFPA 130, Chapter 5, Stations, to NFPA 101, Life Safety Code, are replaced by the corresponding provisions of the CBC in accordance with NFPA 130, A.5.5.1, which states that “where codes other than NFPA 101 are in effect, references to NFPA 101 can be replaced by reference to relevant requirements in the locally applicable building code.”
It should be noted that the fire/life safety elements addressed by NFPA 101 are also addressed by the CBC. However, it should also be noted that unlike the CBC, NFPA 101 is a life safety standard and not a building code, and therefore NFPA 101 does not address the full scope of code provisions addressed by the CBC. The advantages of using the fire/life safety provisions of the CBC are: (1) the fire/life safety provisions of the CBC are coordinated with the other requirements of the CBC (such as structural & seismic design) not addressed by NFPA 101; and (2) the fire/life safety provisions of the CBC are coordinated with the requirements of the other codes of CCR Title 24, the California Building Standards Code, listed in 2.1 of this report.

2.3 CBC Section 433, Fixed Guideway Transit Systems

In CBC, Chapter 4, Special Detailed Requirements Based on Use and Occupancy, Section 433 incorporates provisions from NFPA 130 for fixed guideway transit systems, although from earlier editions of NFPA 130.

However, for the purposes of this report, the applicable provisions of the 2010 edition of NFPA 130 are used and referenced, consistent with 2.2 of this report on the use of NFPA 130 in conjunction with the CBC as the underlying building code.

2.4 Metro Rail Design Criteria

The Metro Rail FLS Design Criteria pertain to transit stations accommodating passengers and employees of the fixed guideway transit systems and to incidental occupancies in the stations. For the purposes of this report, the provisions of the Metro Rail FLS Design Criteria take precedence over the corresponding provisions of NFPA 130 except when the Metro Rail FLS Design Criteria provisions are inconsistent with the performance-based egress and emergency ventilation provisions of NFPA 130.

For the purposes of this report, the more stringent of the prescriptive requirements between the Metro Rail FLS Design Criteria and the CBC are considered to take precedence.
3.0 STATION CONFIGURATIONS

The three underground stations of the Project are enclosed stations as defined in NFPA 130, 3.3.44. Described below is the general configuration of each of the three stations.

3.1 2nd/Hope Street Station

The 2nd/Hope Street Station is a five-level underground station consisting of a platform level with a center platform at 269 ft above datum, a concourse level at 285 ft above datum, an ancillary level at 309 ft above datum containing fan rooms and other equipment spaces, an upper ancillary level at 331 ft above datum containing a traction power substation and other equipment spaces, and a street entrance pavilion at 362 ft containing fare control and fare vending equipment.

3.2 2nd/Broadway Station

The 2nd/Broadway Station is a five-level underground station consisting of a platform level with a center platform at 204 ft above datum, a concourse level at 220 ft above datum, an ancillary level at 242 ft above datum containing a traction power substation, auxiliary power rooms, and other equipment spaces, an upper ancillary level at 256 ft above datum containing a mechanical room and ventilation plenums, and a street entrance pavilion at grade containing fare control and fare vending equipment.

3.3 1st/Central Station

The 1st/Central Station is a three-level underground station consisting of a platform/ancillary level which includes a center platform and ancillary spaces at 225 ft above datum; a concourse/ancillary level varying from 246 ft to 250 ft above datum; and an on-street entrance and elevators, and an entrance pavilion at 269 ft above datum. A portion of the street pavilion is open to the concourse below.
4.0 USE AND OCCUPANCY CLASSIFICATIONS

The three stations of the Project are classified as mixed-use occupancy buildings in accordance with \(CBC \) Section 508.1, with the primary use being rail transit stations. The “station” buildings are essentially the platforms, concourses and ancillary levels. Because the stations are more than 30 feet below grade, \(CBC \) Section 405.1 classifies the stations as underground buildings. \(CBC \) Section 401.1, Detailed Use and Occupancy Requirements, states that in addition to the occupancy and construction requirements in the other chapters of the \(CBC \), the provisions of Chapter 4 apply to the special uses and occupancies described therein. However, \(CBC \) Section 405.1, Exception 3, exempts fixed guideway transit systems from compliance with the requirements for an underground building. The platform and concourse level of each station will comply with the enclosed station requirements of \(NFPA \ 130 \), and with the provisions of \(CBC \) 433 that are consistent with \(NFPA \ 130 \).

The occupancies within the three stations are classified by the \(CBC \) as follows:

<table>
<thead>
<tr>
<th>Use Group</th>
<th>Areas/Spaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-3 Assembly</td>
<td>Passenger platforms and concourses</td>
</tr>
<tr>
<td>B – Business</td>
<td>Employee spaces</td>
</tr>
<tr>
<td>F-2 Factory Industrial Group</td>
<td>Electrical rooms/substations; Mechanical rooms & spaces</td>
</tr>
<tr>
<td>S-1 Moderate Hazard Storage</td>
<td>Storage Rooms</td>
</tr>
</tbody>
</table>

Fixed-guideway traction power equipment is housed in the traction power substations within the stations. The \(CBC \) does not specifically classify the occupancy use group for electrical power substations. F-2 factory industrial group classification was selected for the electrical equipment rooms since these spaces resemble the relative fire hazard and occupant loading defined by the \(CBC \) for this Use Group.

The importance of classifying the occupancy is to establish the number of occupants present, the relative fire hazard, and required fire separation between adjacent occupancies. However, the passenger occupancy loads for egress analyses from the public areas of each station will be based on the requirements of \(NFPA \ 130 \) described in 8.1 of this report and not on the prescriptive requirements of the \(CBC \).
5.0 CONSTRUCTION TYPE & FIRE-RESISTANCE RATINGS

Per CBC 433.1, the three stations of the Project are underground stations. CBC Section 433.2 requires an underground station to be of a minimum Type IB construction. Per NFPA 130, Section 5.2.2, building construction type shall be either Type I – or Type II – or combinations thereof as defined by NFPA 220, Standard on Types of Building Construction, as determined by an engineering analysis of potential fire exposure hazards to the structure. The fire resistance-rating classification system of NFPA 220 and the CBC are similar. The Metro Rail Design Criteria, Fire/Life Safety (FLS) Design Criteria require Type 1 construction as defined in the CBC for underground stations. Accordingly, the three stations of the Project will be a minimum of Type IB construction. The fire-resistance ratings of the station building structural elements per CBC Table 601, and of the shaft enclosures per CBC 708.4, are as follows:

<table>
<thead>
<tr>
<th>Building Element</th>
<th>Type IB Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural frame a</td>
<td>2 hours</td>
</tr>
<tr>
<td>Bearing walls</td>
<td>2 hours</td>
</tr>
<tr>
<td>Exterior</td>
<td>2 hours</td>
</tr>
<tr>
<td>Interior</td>
<td>2 hours</td>
</tr>
<tr>
<td>Nonbearing walls and partitions</td>
<td>See Fire Separations Below</td>
</tr>
<tr>
<td>Exterior</td>
<td></td>
</tr>
<tr>
<td>Interior</td>
<td></td>
</tr>
<tr>
<td>Floor construction</td>
<td>2 hours</td>
</tr>
<tr>
<td>Roof Construction (< 20 ft above floor below)</td>
<td>1 hour</td>
</tr>
<tr>
<td>Shaft enclosures</td>
<td>2 hours</td>
</tr>
</tbody>
</table>

Notes:
a. The structural frame shall be considered to be the columns and the girders, beams, trusses, and spandrels having direct connections to the columns and bracing members designed to carry gravity loads. The members of floor or roof panels that have no connection to the columns shall be considered secondary members and not part of the structural frame.
6.0 FIRE SEPARATIONS

As noted in Section 4 of this report, per the CBC the stations of the Project are mixed-use occupancy buildings consisting of: A-3 Assembly; B – Business; F-2 Factory Industrial, Low Hazard; and S-1 Moderate Hazard Storage.

CBC Table 508.2.5 addresses specific incidental accessory occupancies within a building requiring a fire separation assembly and/or automatic sprinkler protection. NFPA 130, CBC 433.2.2, and Metro Rail FLS Design Criteria 2.2.6 and 2.2.7 require fire separations of traction power substations, electrical control rooms, auxiliary electrical rooms, and associated battery rooms that are unique to transit operations, which are summarized in the following table. The Metro Rail FLS Design Criteria fire separations are the most stringent, and will therefore be applied to each station.

<table>
<thead>
<tr>
<th>Room or Area</th>
<th>Separation</th>
<th>2 hours</th>
<th>2 hours</th>
<th>3 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stationary storage battery systems having a liquid electrolyte capacity of more than 50 gallons, or a lithium-ion capacity of 1,000 pounds, used for facility standby power, emergency power, or uninterrupted power supplies</td>
<td>CBC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traction power substations</td>
<td>NFPA 130</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical control rooms, auxiliary electrical rooms, and associated battery rooms</td>
<td>Metro FLS Design Criteria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trash rooms > 100 square feet</td>
<td>NFPA 130</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Train control rooms and associated battery rooms</td>
<td>Metro FLS Design Criteria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public areas from nonpublic areas</td>
<td>Metro FLS Design Criteria</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Notes:

a. Based on the 2007 edition of NFPA 130. The 2010 edition does not provide specific fire-resistance ratings for the fire separation of these spaces, but references NFPA 101.

Fire separation assemblies will comply with CBC Section 707, fire barriers. Openings in fire barriers will comply with CBC Section 715. 1-1/2-hour fire-resistance rated (B-label) door assemblies will be provided in 2-hour rated fire barriers, and 3-hour fire-resistance rated (A-label) door assemblies will be provided in 3-hour rated fire barriers, per CBC Table 715.4.
7.0 INTERIOR FINISHES

All surfaces exposed to the interior of the station, including fixed or movable walls and partitions, columns and ceilings will meet CBC requirements for interior finish.

Chapter 8 of the CBC contains the performance requirements for controlling fire growth within buildings by restricting interior finish materials. The provisions of Chapter 8 require materials used as interior finishes and comply with flame spread index criteria or to be flame resistant, based on the relative fire hazard associated with the occupancy. The tables below prescribe the minimum requirements for interior finishes applied to walls and ceilings that will be applied to the three Project stations.

Interior Wall and Ceiling Finishes: Minimum Classes by Sprinklered Occupancy
(Ref: CBC Table 803.9)

<table>
<thead>
<tr>
<th>Use Group</th>
<th>Exit Stairways & Exit Passageways</th>
<th>Exit Access Corridors</th>
<th>Rooms and Enclosed Spaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-3</td>
<td>B</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>F</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>S</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
</tbody>
</table>

Notes:
a. Applies when the vertical exits, exit passageways, exit access corridors or exit ways, or rooms and spaces are protected by a sprinkler system installed in accordance with Section 903.3.1.1.

Interior Wall and Ceiling Finish Material Classes
(Ref: CBC 803.1.1)

<table>
<thead>
<tr>
<th>Class</th>
<th>Flame Spread Index</th>
<th>Smoke Developed Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class A</td>
<td>0-25</td>
<td>0-450</td>
</tr>
<tr>
<td>Class B</td>
<td>26-75</td>
<td>0-450</td>
</tr>
<tr>
<td>Class C</td>
<td>76-200</td>
<td>0-450</td>
</tr>
</tbody>
</table>

The purpose of regulating the flame spread of finish materials is to control potential fire growth and spread, as well as smoke development within the means of egress.
8.0 MEANS OF EGRESS

The concourses, and the enclosed exit stairways and passageways leading up from the ends of the station platforms to the street, are established as points of safety at all three of the Project stations. Emergency egress from each station platform is provided by two open escalator/stair pairs leading to the concourse point of safety, and by the enclosed exit stairways at the ends of the platforms, together providing four egress paths from the platform of each station.

The egress capacity calculations in Appendix A of this report demonstrate that: (1) the egress capacity of the platform at each station is sufficient to evacuate the platform occupant load in 4-minutes or less; and (2) that the number and capacity of the egress elements permit evacuation from the most remote point on each station platform to the points of safety in 6-minutes or less.

8.1 Occupant Loads

Occupant loads required by NFPA 130 for egress analyses from the public areas of the station are based on the peak period passenger load of trains simultaneously entering the station on all tracks in normal traffic directions plus the simultaneous entraining load awaiting trains as determined by patronage demand volumes. The train loads for each track are based on the train load per train headway factored to account for service disruptions and system reaction time. The entraining loads for each track are based on the entraining load per train headway factored to account for service disruptions and system reaction time. (Ref: NFPA 130, 5.5.5)

See Appendix A of this report for the calculation of the occupant loads for the public areas of each of the stations of the Project, based on the Travel Demand Model of L.A. Metro.

The occupant loads for means of egress from the non-public service areas of the stations are based on the occupant loads prescribed by the CBC Table 1004.1.1.

Maximum Floor Area Allowances per Occupant For Non-Public Service Areas of the Stations (Ref: CBC Table 1004.1.1)

<table>
<thead>
<tr>
<th>Function of Space</th>
<th>Floor Area in Square Feet per Occupant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessory storage areas</td>
<td>300 gross</td>
</tr>
<tr>
<td>Mechanical equipment rooms</td>
<td>300 gross</td>
</tr>
<tr>
<td>Electrical equipment rooms</td>
<td>300 gross</td>
</tr>
<tr>
<td>Business (operations) areas</td>
<td>100 gross</td>
</tr>
</tbody>
</table>
8.2 Open Stairs & Escalators as Egress Components

In addition to enclosed exit stairways, open stairs and escalators are permitted by NFPA 130 as egress components for an emergency evacuation of a station. (Ref: NFPA 130, 5.2.3.1.1 & 5.5.1.2). Escalators will be constructed of non-combustible materials; escalators used for emergency egress and running in the direction of egress will remain operating, escalators running reverse to the direction of egress will be capable of being stopped locally and remotely (see Section 9 of this report). (Ref: NFPA 130, 5.5.2)

In calculating the egress capacity of escalators, the escalator at each level having the most adverse effect upon egress capacity is considered as being out of service. (Ref: NFPA 130, 5.5.6)

8.3 Points of Safety

NFPA 130, 3.3.35, defines a point of safety as: (1) an enclosed fire exit that leads to a public way or safe location outside the station, trainway, or vehicle; (2) an at-grade point beyond the vehicle, enclosing station, or trainway; or (3) any other approved location.

8.3.1 Concourses as Points of Safety

In accordance with NFPA 130, 5.5.6.2.2, a concourse of an enclosed station can also be defined as a point of safety if the station is equipped with an emergency ventilation system which provides protection for the concourse from the effects of a train fire at the platform, as confirmed by engineering analysis. An emergency ventilation system will be provided at each of the three stations of the Project to establish the concourse of each station as a point of safety.

The engineering analysis for the evaluation of the ventilation system includes a validated subway analytical simulation program applying validated computational fluid dynamics (CFD) techniques. The engineering analyses for the evaluation of the ventilation systems are described in a separate report.

8.3.2 Enclosed Exit Stairways & Exit Passageways

The enclosed exit stairways at the ends of each station leading up to sidewalk exit hatchways, are also points of safety as defined by NFPA 130. The enclosed exit stairways at the ends of the platform at each station offset or shift over at one or two levels of each station as they ascend to street level. At some locations the offset or shift is sufficient to require a passageway to connect the enclosed exit stairway from below to the enclosed exit stairway leading up to the street.

To maintain the level of exit protection per CBC 1020.1, the connecting passageways will be constructed as exit passageways per CBC 1023.1, and would normally be separated from the exit stairways by rated fire barriers and fire doors in accordance with CBC 1022.2.1. However, since any smoke that might enter the exit enclosures would rise in the direction of egress and thereby would be dispersed through the exit hatchways to the atmosphere, it is recommended that there be no fire barriers/doors separating the exit stairways from the connecting exit passageways.

The current practice of L.A. Metro does not require the fire separation of exit stairways from exit passageways in offset enclosed exits. The current practice of L.A. Metro also does not require the pressurization of the offset enclosed exits. The design builder(s) should be required in final design to...
evaluate the tenability of the enclosed exits as part of the final design CFD simulations for each station.

This approach to the enclosed exits will require the concurrence of the authority having jurisdiction (AHJ) for code compliance.

As required by *CBC 1023.3*, exit passageways will have the same fire-rated construction as any exit enclosure to which they connect. As required by *CBC 1023.3*, openings in exit passageways other than exterior openings will be limited to those necessary for exit access to the exit passageway from *normally occupied spaces* and for egress from the exit passageway. This usually requires the introduction of an exit access vestibule or corridor between an equipment room and an exit passageway.

8.4 Number & Capacity of Egress Elements: Public Areas of Stations

8.4.1 NFPA 130 Prescriptive Platform Egress Requirements

Although *NFPA 130* requires performance-based egress analyses, it also contains several important prescriptive platform egress requirements that are incorporated into the design of each of the three stations of the Project.

- At least two remote means of egress are provided from each station platform. (Ref: *NFPA 130, 5.5.1.3*)

- The travel distances on the platforms are well within the *NFPA 130* maximum distance of 325-feet to the vertical circulation elements (and the *CBC* maximum distance of 300-feet to a point of safety). (Ref: *NFPA 130, 5.5.6.1.1* and *CBC, 433.3.5*)

- Since the enclosed exit stairways are at the ends of each platform, there are no common paths of travel at ends of the platforms, and therefore the platforms meet the *NFPA 130* limitation of 82-feet for common paths of travel at ends of platforms. (Ref: *NFPA 130, 5.5.1.4*)

8.4.2 Other Prescriptive Egress Requirements

Other prescriptive egress requirements are incorporated into the design of each of the three stations of the Project.

- At least two means of egress, a minimum of 40-feet apart, are provided at each station concourse. (Ref: *Metro Rail FLS Design Criteria 2.5.3.9*)

- Exits other than fare collection gates provide for at least 50 percent of the exit capacity in any fare barrier. (Ref: *Metro Rail FLS Design Criteria 2.5.3.12*)

8.4.3 Timed-Egress Analyses

NFPA 130 requires timed-egress analyses to demonstrate that the number and capacity of the egress components meet the criteria for platform evacuation and evacuation to a point of safety:

- Dynamic capacities (people per inch per minute) and travel speeds (feet per minute) are given for each component of an egress path. (Ref: *NFPA 130, 5.5.6.3*).
8.0 Means of Egress

- Platform Evacuation Time: Egress capacity is to be sufficient to evacuate the platform occupant load from a station platform in 4-minutes or less (*the 4-minute test*). (Ref: *NFPA 130*, 5.5.6.1)

- Evacuation Time to a Point of Safety: The station is to be designed to permit evacuation from the most remote point on a platform to a point of safety in 6-minutes or less (*the 6-minute test*). (Ref: *NFPA 130*, 5.5.6.2)

See Appendix A to this report for the egress capacity calculations for the public areas of each of the stations of the Project. For the purpose of the egress capacity calculations, the points of safety within the exit enclosures at the ends of the platform of each station were designated as a location at the concourse level within each exit enclosure. The calculations demonstrate the compliance of each of the stations to the above NFPA-130 timed-egress criteria, as summarized in the following table.

<table>
<thead>
<tr>
<th>Station</th>
<th>Platform Evacuation</th>
<th>Longest Time to a Point of Safety</th>
<th>Longest Time To Street</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time (minutes)</td>
<td>4-Minute Criterion Time (minutes)</td>
<td>6-Minute Criterion Time (minutes)</td>
</tr>
<tr>
<td>2nd/Hope Street</td>
<td>2.36</td>
<td>Pass</td>
<td>3.37</td>
</tr>
<tr>
<td>2nd/Broadway</td>
<td>2.37</td>
<td>Pass</td>
<td>3.42</td>
</tr>
<tr>
<td>1st/Central Avenue</td>
<td>2.44</td>
<td>Pass</td>
<td>3.25</td>
</tr>
</tbody>
</table>

In addition to the determining conformance to the timed-egress criteria of Chapter 5 of *NFPA 130*, the calculated egress times are used as a basis for determining the time-of-tenability criteria, and as a factor is evaluating the time that the required airflow rates of the emergency ventilation system are to be maintained, in accordance with Chapter 7 of *NFPA 130* (see 10.1 of this report).

8.5 Means of Egress: Non-Public Service Areas of Stations

Exits from the service areas of each station of the Project are provided by exit stairways and, for those service areas on the concourse levels, by exits to the concourse point of safety.

NFPA 130 states that the means of egress requirements for a station shall comply with *NFPA 101* except where modified by the provisions of *NFPA 130*. (Ref: *NFPA 130*, 5.5.1) Since egress from the non-public service areas are not specifically addressed by *NFPA 130*, the guidance of *NFPA 130* is to use the egress provisions of *NFPA 101*. However, as noted, in Section 2.2 of this report, *NFPA 101*, *Life Safety Code* does not address the full scope of code provisions addressed by the CBC, therefore references to *NFPA 101* are replaced in this report by the corresponding provisions of the CBC, in accordance with NFPA 130A.5.5.1.
8.5.1 Common Paths of Egress Travel

According to the CBC 1014.3, the common paths of egress travel shall not exceed 75 feet; however, the common path of egress travel for Group B, F, and S occupancies is allowed to be not more than 100 feet provided that the building is equipped throughout with an automatic sprinkler system installed in accordance with CBC Section 903.3.1.1. The common paths of egress travel in the non-public service areas of the stations do not exceed the 100-foot maximum of the CBC.

8.5.2 Exit Access Travel Distances

The exit access travel distances for non-public service areas of station are within the maximum exit access travel distances prescribed by CBC Table 1016.1.

CBC Table 1016.1

<table>
<thead>
<tr>
<th>Occupancy</th>
<th>Exit Access Travel Distance (Feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-3</td>
<td>250<sup>a</sup></td>
</tr>
<tr>
<td>B</td>
<td>300<sup>a</sup></td>
</tr>
<tr>
<td>F-2</td>
<td>400<sup>a</sup></td>
</tr>
<tr>
<td>S-1</td>
<td>250<sup>a</sup></td>
</tr>
</tbody>
</table>

Note:

a. Buildings equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1

8.5.3 Dead End Corridors

Per CBC 1018.4, where more than one exit or exit access doorway is required, the exit access shall be arranged such that dead end corridors shall not exceed 20 feet. However, in occupancy group B, F, and S, where the building is equipped throughout with an automatic sprinkler system, the length of the dead-end corridors can be increased to a maximum of 50 feet. The corridors in the service areas of the stations do not exceed the dead-end requirements.

8.6 Maintenance of the Level of Exit Protection

Per CBC, 1020.1, once a given level of exit protection is achieved (such as the level of protection of an exit enclosure), such level of protection shall not be reduced until arrival at the exit discharge. Therefore an egress path cannot lead from an exit stairway or exit passageway to an exit access corridor, which has a lesser level of protection. The level of exit protection of the egress paths through the concourses will be maintained by the station emergency ventilation systems to the exit discharges to the public ways. The level of exit protection of the exit stairway enclosures will be maintained from the platform level to the exit discharge hatches at street level.
9.0 ELEVATOR & ESCALATOR REQUIREMENTS

The elevators and escalators of the three stations of the Project will comply with the requirements of NFPA 130 and Chapter 30 of the CBC which references ASME A.17.1/CSA B44, Safety Code for Elevators and Escalators. Per Metro Rail FLS Design Criteria 2.2.10.3, elevators and escalators will conform to CCR Title 24 and Title 8 Elevator Safety Orders.

As noted in Section 8.2 of this report, escalators will be constructed of non-combustible materials. During an emergency evacuation of a station, escalators used for emergency egress and running in the direction of egress will remain operating; escalators used for emergency egress running reverse to the direction of egress will be capable of being stopped locally and remotely. (Ref: NFPA 130, 5.5.2) Escalators will comply with APTA specifications for transportation-grade escalators to the extent consistent with the Metro Rail Design Criteria.

NFPA 130, 5.5.6.3.3, permits the use of elevators to account for part of the means of egress capacity in stations; however the elevators in the three stations of the Project are not designed as occupant evacuation elevators and are not counted in the timed-egress analyses for the evacuation of the stations.

CBC, 3002.4, requires at least one elevator in buildings four or more stories below grade to provide fire department emergency access to all floors and to be sized to accommodate an ambulance stretcher. This requirement is separate and distinct from the minimum elevator sizes stipulated in ADAAG and the CBC to provide accessibility for people using wheelchairs. At each station, the elevators connecting the street level to the concourse, and the elevators connecting the concourse to the platforms, will comply with these requirements.
10.0 EMERGENCY VENTILATION/SMOKE CONTROL

10.1 Station Emergency Ventilation System

Emergency ventilation will be provided at each of the three stations of the Project as required for enclosed stations by NFPA 130, Section 5.3. The emergency ventilation system will be designed to provide a tenable environment along the paths of egress from a fire incident as required for enclosed stations by NFPA 130, 7.2.1. At two of the three stations of the Project the concourse is open to the platform levels below. At each of the three stations the platform and concourse is connected by open stairs and escalators.

NFPA 130, 7.3.2, requires that the emergency ventilation system be capable of operating for a minimum of one hour but not less than the required time of tenability, based on the egress time. The emergency ventilation system serving the platforms and concourse levels, and the VCEs, will be designed to operate for a minimum of one hour based upon the calculated evacuation times (see 8.4.3 of this report) and the performance criteria identified in Chapter 7 of NFPA 130.

As required by NFPA 130, the ventilation system design methodology will encompass:

- The heat release rate produced by the combustible load of a vehicle and any combustible materials that could contribute to the fire load within the station
- The anticipated fire growth rate and soot release rates
- Non-fire (or cold) air velocities that can be measured during system commissioning to confirm that the smoke control system as built meets the requirements of the quantitative analysis

The smoke control system within the passenger platform and concourse will be activated using heat detectors located throughout the platform area with central supervising and local controls available for monitoring any further actions that may be necessary. The engineering analysis will include realistic delay times in system activation, representative of those anticipated due to the remote manual operation of the system. All emergency ventilation fans will be designed to achieve their full operating speed within 30 seconds from a stopped position when started across the line, as required by NFPA 130, 7.3.1.1.

The emergency ventilation/smoke control system equipment will be fire hardened for continued operation in a fire condition. Per NFPA 130, Section 7.3.2, emergency ventilation fans, their motors, and all related components exposed to the exhaust airflow will be designed to operate in an atmosphere of 482°F (250°C) for a minimum of 1 hour. A design analysis maybe used to reduce this temperature; however, it will not be reduced to less than 302°F (150°C).

NFPA 130 does not specify the design method required for smoke control system design. A quantitative analysis of airflow dynamics produced in a fire scenario have been undertaken for each station of the Project, using a computational fluid dynamics (CFD) simulation technique, to demonstrate that the ventilation system achieves and maintains tenable conditions in the means of egress. These analyses have confirmed that in each station the concourse qualifies as a point of safety.
10.2 Enclosed Exit Stairways

As noted above in 8.3.2 of this report, the enclosed exit stairways and passageways leading up from the ends of the station platforms to the street are established as points of safety at all three of the Project stations. Also as noted above in 8.3.2, the enclosed exit stairways at the ends of the platform offset or shift over at one or two levels of each station as they ascend to street level. It is assumed that should any smoke enter the exit enclosures, the smoke would rise in the direction of egress and be dispersed to the atmosphere through the exit hatchways, thereby maintaining the tenability of the egress path in the exit enclosures. We therefore recommend that there be no fire barriers/doors separating the vertical and horizontal components of the exit enclosures, which is in accord with the current practice of L.A. Metro, and will require the concurrence of the AHJ for code compliance.

As noted in 8.3.2 of this report, the design builder(s) should be required in final design to evaluate the tenability of the enclosed exits as part of the final design CFD simulations for each station.
11.0 FIRE ALARM & COMMUNICATIONS SYSTEMS

As required by CBC, 907.2.26, each station of the Project will be provided with an approved emergency voice/communication system in accordance with NFPA 72.

11.1 Fire Detection & Alarm System

As required by CBC, 907.2.26.2, each station of the Project will be provided with a fire detection and alarm system consisting of:

- Fire alarm control unit at a location permitted by the enforcing agency.
- Alarm annunciator(s), indicating the type of device and general location of the alarm.
- Emergency telephones (ETELs) throughout passenger areas.
- Automatic smoke detectors in ancillary spaces.

11.2 Emergency Voice/Alarm Communication & Public Address System

As required by CBC, 907.2.26.3, each station of the Project will be provided with an emergency voice/alarm communication system capable of transmitting voice and recorded or electronically generated textural messages to all areas of each station. Electronically generated textural messages at each station will be displayed on the variable message signs (VMSs) installed on both sides of the platform, at the fare collection area, and at the station entrance.

It is common practice in passenger stations to utilize the public address system to broadcast emergency instructions to the building occupants in lieu of a dedicated fire alarm voice evacuation and communication system. Public address systems typically afford better audibility characteristics versus conventional fire alarm systems.

In accordance with Metro FLS Design Criteria, 2.6.1, the public address system will be utilized for sounding required building-audible fire alarm signals (temporal pattern) from the fire alarm control panel by means of a tone generator preceding verbal announcements to direct patron evacuation. Audibility level shall be a minimum of 10db over any background noise. (Also in accordance with Metro FLS Design Criteria, 2.6.1, an alternative option would be to use a horn-strobe or strobe/voice evacuation system in lieu of the public address system to sound the building-audible fire alarm signal, with the approval of the AHJ.)

NOTE: Per the Federal ADA/ABA Accessibility Guidelines, 2004 edition, 702.1, fire alarm systems shall have permanently installed audible and visible alarms complying with NFPA 72 (1999 or 2002 edition), except that the maximum allowable sound level of audible notification appliances complying with Section 4-3.2.1 of NFPA 72 (1999 edition) shall have a sound level no more than 110 dB at the minimum hearing distance from the audible appliance. See the separate Project report titled Preliminary Accessibility Assessment.
11.3 Blue Light Stations

As defined by *NFPA 130*, 3.3.4, blue light stations are locations where emergency services or authorized personnel can communicate with the operations control center and disconnect traction power. Blue light stations will be provided at the ends of the platform of each station as required by *NFPA 130*, 6.2.71.
12.0 FIRE SUPPRESSION SYSTEMS

12.1 Automatic Sprinkler System

NFPA 130, 5.7.3, requires automatic sprinkler protection be provided in all areas used for concessions, storage, trash rooms; in the steel truss area of all escalators; and other similar areas with combustible loads, except trainways. The installation of the automatic sprinkler system will comply with *NFPA 13,* and will be tested and maintained in accordance with *NFPA 25.*

CBC, 903.2.17, requires the installation of an automatic sprinkler system in all stations of fixed guideway transit systems, except at machinery rooms, electrical rooms and train control rooms protected by an approved automatic fixed fire-extinguishing system; and requires a manually activated station guideway deluge sprinkler system in underground stations with raised platforms.

All areas of each station of the Project will be provided with an automatic sprinkler protection system, including the platform, concourse, and service areas of the station. Those equipment rooms which are not considered appropriate for the use of an automatic sprinkler system will be exempt or provided with an alternative automatic fire suppression system.

Heat detectors mounted as part of the over-platform lighting strip will initiate sprinkler operation within 90-seconds of a train fire breaking through open windows and doors.

12.2 Standpipe System

NFPA 130, 5.7.4, requires the installation of Class I or Class III standpipes in enclosed stations in accordance with *NFPA 14.* The standpipe system is not required to be enclosed in fire-resistance rated construction provided the system is cross-connected or fed from two locations, and provided isolation valves are installed not more than 800-feet apart. In addition to the usual identification required on fire department connections for standpipes, there shall also be wording to identify the fire department connection as part of the station system.

CBC, 905.3.10, requires a Class III standpipe system for underground stations of a fixed guideway transit system.

Therefore, a Class I or Class III standpipe system will be installed in accordance with the requirements of *NFPA 130, 5.7.4,* and *CBC, 905.3.10.*
13.0 EMERGENCY POWER & LIGHTING

Emergency power will be provided at each station of the Project as required by NFPA 130, 5.4.11, for:

- Emergency lighting
- Protective signal systems
- Emergency communication systems
- Fire command center

Standby power will be provided for accessible means of egress elevators per CBC 2702.2.5 and fire service access elevators per CBC 3007.7.

The design of the emergency power system will comply with the requirements of Article 700 of NFPA 70, Emergency Systems, and Chapter 4 of NFPA 110.

The concourse and platform of each station are to be equipped with an emergency lighting system in accordance with the CBC and NFPA 130. CBC 1006.2 requires a minimum illumination level of 1-foot candle (11 lux) at the floor level.

Exits will be marked with readily visible illuminated exit signs. Illuminated exit signs will be included in the emergency lighting system and are to be powered by the standby source. Emergency lighting fixtures and exit signs are to be wired on separate circuits from the emergency distribution panels.

Emergency lighting for stairs and escalators will be designed to emphasize illumination on the top and bottom steps and landings. All newel- and comb-lighting on escalator steps will be on emergency power circuits in accordance with NFPA 130, 5.6.2.1. Luminous egress path markings will be provided within exit stairways in accordance with CBC Section 1024. However, the locations of egress path markings within exit stairways will take into account that the direction of egress from the underground stations of the Project is up (not down) to the street level.
14.0 FIRE COMMAND CENTER / EMERGENCY MANAGEMENT PANEL

NFPA 130 Section 5.7.6 requires a fire command center in underground stations in accordance with NFPA 72, National Fire Alarm and Signaling Code, for use by emergency responders for management of fire emergencies. The fire command center at each station will consist of an emergency management panel (EMP). Remote access to the EMP will be provided at each station entrance via a computer connection jack.

The EMP at each station of the Project will provide the following:

- Fire fighter access to visual mapping of the various areas being monitored by the fire alarm and detection system
- Access to the public address system, with the ability to override all other public address system input
- Access to pre-programmed emergency messages for display on the visual display units in the station (in compliance with ADAAG).
- Access to status and controls of emergency ventilation fans, dampers, and other equipment used in the emergency ventilation of the station
- Fire alarm control panel
- Access to the status and controls of escalators and elevators
- Access to the status of emergency exit stair doors
- Access to digitized floor plans of the station showing fire suppression systems, means of egress, and emergency equipment closets
15.0 WIRING REQUIREMENTS

Wiring at each station of the Project will comply with the wiring requirements of NFPA 70, National Electrical Code, and to the additional requirements of NFPA 130, Section 5.4, including:

- All conduits, raceways, ducts, boxes, cabinets, and equipment enclosures to be constructed of noncombustible materials in accordance with ASTM E 136.
- All conductors to be insulated
- All insulations to be moisture- and heat-resistant type
- All wires and cables to be listed as being resistant to the spread of fire and to have reduced smoke emissions
- All conductors, except radio antennas, to be enclosed in their entirety in public areas in armor sheaths, conduits, or enclosed raceways, boxes, and cabinets
16.0 CONCLUSION & RECOMMENDATIONS

It is the conclusion of this Preliminary Fire/Life Safety Assessment that the Preliminary Designs of the three stations of the Regional Connector Transit Corridor Project comply with the applicable requirements of the codes and standards listed in Section 2 of this report. This conclusion is based on the following:

- The Preliminary Architectural Drawings dated December 20, 2011.
- The review of the requirements of the codes and standards described in this assessment by the architectural and engineering design leads for each of the three stations of the Project.
- The Platform Occupant Loads and the Egress Calculations attached as Appendix A to this report.
- The Emergency Ventilation Analyses that have been undertaken for each station of the Project, using a computational fluid dynamics (CFD) simulation technique, to demonstrate that the ventilation system achieves and maintains tenable conditions in the means of egress. These analyses have confirmed that in each station the concourse qualifies as the point of safety.

It is the recommendation of this assessment that separate Final Fire/Life Safety Assessment Reports, based on the Travel Demand Model of L.A. Metro and the Final Design of each of the three stations of the Project, be undertaken by the Design/Builder for each station. The Final Fire/Life Safety Assessment Report for each station of the Project should:

- Address all the fire/life safety requirements for each station addressed by this Preliminary Fire/Life Safety Assessment.
- Include Platform Occupant Loads and the Egress Calculations for each station, based on the Final Design of each station, in accordance with the requirements of NFPA 130.
- Include Ventilation Analyses for each station, based on the Final Design of each station, using CFD simulations to demonstrate the tenability of all egress paths from the platforms of each station to the points of safety and from the points of safety to the public ways, and to demonstrate that the concourse of each station will qualify as a point of safety in the emergency evacuation of the station, in accordance with the requirements of NFPA 130.

It is also the recommendation of this assessment that the concurrence of the AHJ for code compliance be obtained for:

- The deletion of the fire barriers and fire doors normally required between the stairways and the exit passageways in the offset enclosed exits leading from the platforms up to the exit hatchways at street level, and for not providing pressurization for the enclosed exits, both of which are in accordance with the current practice of L.A. Metro (see 8.3.2 and 10.2 of this report). The design builder(s) should be required in final design to evaluate the tenability of the enclosed exits as part of the final design CFD simulations for each station.
- The replacement of references in NFPA 130, Chapter 5, Stations, to NFPA 101, Life Safety Code, by the corresponding provisions of the CBC in accordance with NFPA 130, A.5.5.1 (see 2.2 of this report).
APPENDIX A
Platform Occupant Loads & Egress Calculations
2nd and Hope Station: Egress Capacity Calculations
Assumptions:
1. Platform occupant load was calculated based on NFPA 130 Standard (2010 edition).
2. One escalator at each level was assumed to be out of service.
3. The Concourse area would be ventilated as per NFPA 130 criteria and is considered as a point of safety.
4. The time to open the Exit Hatch is not included.

Summary
1. The platform clearance time complies with the 4-minute criteria required by NFPA 130.
2. The evacuation time from the platform to the platform emergency stairs complies with the 6-minute NFPA 130 criteria.
3. The longest time for the last occupant to reach a point of safety is 3.37 minutes. The longest time for the last occupant to reach street level is 8.39 minutes.

<table>
<thead>
<tr>
<th>Route</th>
<th>Egress Paths</th>
<th>Clearing Platform</th>
<th>To a Point of Safety</th>
<th>To Street</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Platform to Concourse through West Emergency stairway (No. 8), and then to plaza/street level through corresponding Exit Hatch.</td>
<td>2.36 Pass</td>
<td>Concourse</td>
<td>2.88 Pass</td>
</tr>
<tr>
<td>2</td>
<td>Starting 30 ft west on Platform to Concourse through Escalator (No. 4), Escalator 2a & 1a and then to street level through Hope street Exit.</td>
<td>2.36 Pass</td>
<td>Concourse</td>
<td>3.36 Pass</td>
</tr>
<tr>
<td>3</td>
<td>Starting 90 ft East on Platform to Concourse through Escalator (No. 4), Escalator 2a & 1a and then to street level through Hope street Exit.</td>
<td>2.36 Pass</td>
<td>Concourse</td>
<td>3.36 Pass</td>
</tr>
<tr>
<td>4</td>
<td>Starting 90 ft West on Platform to Concourse through Stair (No. 3), Escalator 2a & 1a and then to street level through Hope street Exit.</td>
<td>2.36 Pass</td>
<td>Concourse</td>
<td>3.20 Pass</td>
</tr>
<tr>
<td>5</td>
<td>Starting 30 ft east on Platform to Concourse through Stair (No. 3), Escalator 2a & 1a and then to street level through Hope street Exit.</td>
<td>2.36 Pass</td>
<td>Concourse</td>
<td>3.20 Pass</td>
</tr>
<tr>
<td>6</td>
<td>Platform to Concourse through East Emergency stairway (No. 5), and then to plaza/street level through corresponding Exit Hatch.</td>
<td>2.36 Pass</td>
<td>Concourse</td>
<td>3.20 Pass</td>
</tr>
<tr>
<td>Element</td>
<td>Persons per inch per minute</td>
<td>Persons per minute per unit</td>
<td>Travel Speed (fpm)</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>----------------------------</td>
<td>----------------------------</td>
<td>--------------------</td>
<td></td>
</tr>
<tr>
<td>Platforms, Corridors, and Ramps.</td>
<td>2.08</td>
<td>---</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>Stairs and Escalators (see note 1):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i) Up direction:</td>
<td>1.31</td>
<td>---</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>(ii) Down direction:</td>
<td>1.41</td>
<td>---</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Doors and Gates (single leaf)</td>
<td>---</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doors and Gates (multi-leaf)</td>
<td></td>
<td>2.08</td>
<td>Section 5.6.3.4.3</td>
<td></td>
</tr>
<tr>
<td>Turnstiles</td>
<td>---</td>
<td>25</td>
<td>Assume</td>
<td></td>
</tr>
<tr>
<td>Exit Hatch</td>
<td>2.08</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. NFPA 130 Standard, Section 5.6.3.2.3 specifies the capacity and travel speed for stairs/escalators but does not indicate whether the values are dependent on the travel direction. However, the examples in Annex C indicate that the capacity and travel speed for the up direction are 1.31 pim and 40 fpm, respectively, and the capacity and speed for the down direction are 1.41 pim and 48 fpm, respectively.

2. NFPA 130 Standard, Section 5.6.3.5.2 specifies that turnstile-type fare collection gates shall have a capacity of 25 people per minute for egress calculations. Therefore assume a capacity of 25 people per minute for all turnstiles.
Egress Capacity

One escalator of each level is assumed to be out of service (per NFPA 130 2010 edition, Section 5.2.6.3.2.6).

Egress Elements:

<table>
<thead>
<tr>
<th>Route</th>
<th>Direction</th>
<th>No. of Units</th>
<th>Width (m)</th>
<th>Persons per hour</th>
<th>Persons per minute</th>
<th>Person Total per minute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platform to Lower Concourse</td>
<td>Up</td>
<td>1</td>
<td>36</td>
<td>56</td>
<td>56</td>
<td>56</td>
</tr>
<tr>
<td>Emergency Stair No. 7 Door</td>
<td>Up</td>
<td>1</td>
<td>72</td>
<td>1.31</td>
<td>94</td>
<td>94</td>
</tr>
<tr>
<td>Stair No 4</td>
<td>Up</td>
<td>1</td>
<td>72</td>
<td>1.31</td>
<td>94</td>
<td>94</td>
</tr>
<tr>
<td>Stair No 3</td>
<td>Up</td>
<td>1</td>
<td>46</td>
<td>1.31</td>
<td>63</td>
<td>63</td>
</tr>
<tr>
<td>Escalator No 4</td>
<td>Up</td>
<td>1</td>
<td>46</td>
<td>1.31</td>
<td>63</td>
<td>63</td>
</tr>
<tr>
<td>Escalator No 3</td>
<td>Up</td>
<td>1</td>
<td>46</td>
<td>1.31</td>
<td>63</td>
<td>63</td>
</tr>
<tr>
<td>-</td>
<td>Up</td>
<td>0</td>
<td>0</td>
<td>1.31</td>
<td>63</td>
<td>63</td>
</tr>
<tr>
<td>-</td>
<td>Up</td>
<td>0</td>
<td>0</td>
<td>1.31</td>
<td>63</td>
<td>63</td>
</tr>
<tr>
<td>Emergency Stair No. 5 Door</td>
<td>Up</td>
<td>1</td>
<td>36</td>
<td>56</td>
<td>56</td>
<td>56</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>372</td>
</tr>
<tr>
<td>Total stairs:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>252</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Platform to Concourse through Emergency Stairway</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency Stair No. 7</td>
</tr>
<tr>
<td>Emergency Stair No. 5</td>
</tr>
<tr>
<td>Total:</td>
</tr>
<tr>
<td>Total stairs:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Concourse Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concourse Concourse</td>
</tr>
<tr>
<td>Escalator No. 2b</td>
</tr>
<tr>
<td>Stair No. 2</td>
</tr>
<tr>
<td>Stair No. 2</td>
</tr>
<tr>
<td>Escalator No. 2a</td>
</tr>
<tr>
<td>Total:</td>
</tr>
<tr>
<td>Total stairs:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Concourse: West Emergency Stairway Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concourse Corridor</td>
</tr>
<tr>
<td>Emergency Stairway No. 10(West)</td>
</tr>
<tr>
<td>Total:</td>
</tr>
<tr>
<td>Total stairs:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Concourse: East Emergency Stairway Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concourse Corridor</td>
</tr>
<tr>
<td>Emergency Stairway No. 9 (East)</td>
</tr>
<tr>
<td>Total:</td>
</tr>
<tr>
<td>Total stairs:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pressure/Miscellaneous Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corridor</td>
</tr>
<tr>
<td>Escalator No. 1a</td>
</tr>
<tr>
<td>Stair No. 1</td>
</tr>
<tr>
<td>Stair No. 1</td>
</tr>
<tr>
<td>Escalator No. 1b</td>
</tr>
<tr>
<td>Total:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Roof Level (South East)</th>
</tr>
</thead>
<tbody>
<tr>
<td>East Corridor</td>
</tr>
<tr>
<td>9th East side Exit Stairway No. 12</td>
</tr>
<tr>
<td>9th East Stairway No. 12 Exit Hatch</td>
</tr>
<tr>
<td>Total:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plaza Level Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevator Passageway</td>
</tr>
<tr>
<td>Turnstile</td>
</tr>
<tr>
<td>Gate</td>
</tr>
<tr>
<td>Hope St. Exit Door</td>
</tr>
<tr>
<td>Total:</td>
</tr>
</tbody>
</table>

(Redacted and not included: excluding Hope Street Exit)
Passenger Load

Platform
- Platform Occupant Load: 878 [Based on NFPA 130 Standards (2010 edition).]

<table>
<thead>
<tr>
<th>Egress capacity (ppm)</th>
<th>Percent</th>
<th>Number of passengers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stairs & Escalators</td>
<td>252</td>
<td>67.7%</td>
</tr>
<tr>
<td>West Emergency Stairway Door</td>
<td>60</td>
<td>16.1%</td>
</tr>
<tr>
<td>East Emergency Stairway Door</td>
<td>60</td>
<td>16.1%</td>
</tr>
</tbody>
</table>

Total: 100% 878

Concourse
- Concourse West Area Occupant Load: 142 (from platform)
- Concourse East Area Occupant Load: 142 (from platform)
- Concourse Center Area Occupant Load: 594

<table>
<thead>
<tr>
<th>Egress capacity (ppm)</th>
<th>Percent</th>
<th>Number of passengers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concourse Stairway (No. 2)</td>
<td>173</td>
<td>76.7%</td>
</tr>
<tr>
<td>Escalator 2b</td>
<td>52</td>
<td>23.3%</td>
</tr>
</tbody>
</table>

Total: 100% 602

Plenum/Upper Ancillary level
- Plenum Area Occupant Load: 602 (from Concourse center Area)

Total Plenum Level Occupant Load: 602

Plaza
- Plaza Occupant Load: 602 (from Plenum Level)

<table>
<thead>
<tr>
<th>Egress</th>
<th>Percent</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turnstile (Plaza Level/Street)</td>
<td>125</td>
<td>51.0%</td>
</tr>
<tr>
<td>Fair Gates</td>
<td>120</td>
<td>49.0%</td>
</tr>
</tbody>
</table>

Total: 100% 602
Walking Time For The Longest Exit Route

<table>
<thead>
<tr>
<th>Route</th>
<th>ft</th>
<th>min</th>
<th>Total Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>On Platform</td>
<td>T1</td>
<td>56</td>
<td>134</td>
</tr>
<tr>
<td>Platform to Concourse, Elevation</td>
<td>T2</td>
<td>15.0</td>
<td>40</td>
</tr>
<tr>
<td>Concourse Level - Point of Safety</td>
<td>T3</td>
<td>16</td>
<td>134</td>
</tr>
<tr>
<td>Concourse Level-2</td>
<td>T4</td>
<td>6</td>
<td>134</td>
</tr>
<tr>
<td>Concourse Level To upper level, Elevation</td>
<td>T5</td>
<td>55</td>
<td>40</td>
</tr>
<tr>
<td>To safe area</td>
<td>T6</td>
<td>10</td>
<td>124</td>
</tr>
</tbody>
</table>

T (total walking time) = summation of T1 through T6

Stairs from Platform to Concourse

- Platform occupant load = 576
- Exit capacity = 372
- Q1 (platform clearing time) = occupant load / exit capacity = 2.36 minutes
- W1 (waiting time) = Q1 - T1 = 1.31 minutes

Under 4 minutes

Concourse - West Emergency Stairway Corridor from Concourse to Upper Level

- Platform occupant load = 142
- Exit capacity = 62
- Q2 (platform clearing time) = occupant load / exit capacity = 2.77 minutes
- W2 (waiting time) = Q2 - Q1 = 0.00 minutes

Under 4 minutes

Concourse - West Emergency Stairway to roof Level

- Occupant load = 142
- Exit capacity = 71
- Q3 (clearing time) = occupant load / exit capacity = 2.02 minutes
- Max. clearing time = 2.36 minutes
- W3 (waiting time) = Q3 - Max. Time = 0.00 minutes

Under 4 minutes

Roof Level - Emergency Exit Hatch No. 1

- Occupant load = 142
- Exit capacity = 100 (Assume)
- Q4 (clearing time) = occupant load / exit capacity = 1.42 minutes
- Max. clearing time = 2.36 minutes
- W4 (waiting time) = Q4 - Max. Time = 0.00 minutes

Under 4 minutes

Total Time to reach Point of Safety

- Total time to reach Point of Safety = 2.68 minutes
- Total exit time to street = T + W1 + W2 + W3 + W4 = 4.73 minutes
Walking Time For The Longest Exit Route

<table>
<thead>
<tr>
<th>Stage</th>
<th>ft</th>
<th>fps</th>
<th>Minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>On Platform</td>
<td>30</td>
<td>124</td>
<td>0.31</td>
</tr>
<tr>
<td>Platform to Concourse, Elevation</td>
<td>16</td>
<td>40</td>
<td>0.40</td>
</tr>
<tr>
<td>Concourse Level - Point of Safety</td>
<td>74</td>
<td>124</td>
<td>0.60</td>
</tr>
<tr>
<td>Concourse Level - 2</td>
<td>87</td>
<td>124</td>
<td>0.70</td>
</tr>
<tr>
<td>Concourse Level To Upper Ancillary Level, Elevation</td>
<td>46</td>
<td>40</td>
<td>1.15</td>
</tr>
<tr>
<td>Upper Ancillary Level</td>
<td>64</td>
<td>124</td>
<td>0.52</td>
</tr>
<tr>
<td>Upper Ancillary Level To Plaza Level, Elevator</td>
<td>46</td>
<td>40</td>
<td>1.16</td>
</tr>
<tr>
<td>Plaza Level</td>
<td>137</td>
<td>124</td>
<td>1.10</td>
</tr>
<tr>
<td>To street area</td>
<td>10</td>
<td>124</td>
<td>0.08</td>
</tr>
</tbody>
</table>

T (total walking time) = summation of T1 through T9

Stairs (from Platform to Concourse)

- Platform occupant load: 878
- Exit capacity: 372
- Q1 (platform clearing time) = occupant load / exit capacity
- W1 (waiting time) = Q1 - T1 = 2.36 minutes

Under 4 minutes

(Concourse) central Corridor - Point of Safety

- Occupant load: 602
- Exit capacity: 1092
- Q2 (clearing time) = occupant load / exit capacity
- W2 (waiting time) = Q2 - Q1 = 0.00 minutes

(Concourse) - To Upper Ancillary level

- Occupant load: 602
- Exit capacity: 228
- Q3 (clearing time) = occupant load / exit capacity
- Max clearing Time
- W3 (waiting time) = Q3 - Max. Time = 0.31 minutes

Plenum / Ancillary Level - To Plan level

- Occupant load: 602
- Exit capacity: 225
- Q4 (clearing time) = occupant load / exit capacity
- Max clearing Time = 2.67
- W4 (waiting time) = Q4 - Max. Time = 0.00 minutes

Plaza Level

- Occupant load: 602
- Exit capacity: 245
- Q5 (clearing time) = occupant load / exit capacity
- Max clearing Time = 2.67
- W5 (waiting time) = Q5 - Max. Time = 0.00 minutes

Total Time to reach Point of Safety: 3.36 minutes **Under 6 minutes**
Total exit time to street = T + W1 + W2 + W3 + W4 + W5 = 8.38 minutes
Walking Time For The Longest Exit Route

<table>
<thead>
<tr>
<th>Walking Time</th>
<th>ft</th>
<th>m</th>
<th>Min</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>On Platform</td>
<td>96</td>
<td>30</td>
<td>0.79</td>
<td>R3-A-111</td>
</tr>
<tr>
<td>Platform to Concource, Elevation</td>
<td>16</td>
<td>5</td>
<td>0.40</td>
<td>R3-A-202</td>
</tr>
<tr>
<td>Concource Level-Point of Safety</td>
<td>74</td>
<td>23</td>
<td>0.60</td>
<td>R3-A-112</td>
</tr>
<tr>
<td>Concource Level2</td>
<td>97</td>
<td>32</td>
<td>0.70</td>
<td>R3-A-112</td>
</tr>
<tr>
<td>Concource Level To Upper Ancillary Level, Elevation</td>
<td>46</td>
<td>15</td>
<td>1.15</td>
<td>R3-A-203</td>
</tr>
<tr>
<td>Upper Ancillary Level</td>
<td>44</td>
<td>14</td>
<td>0.92</td>
<td>R4-A-114</td>
</tr>
<tr>
<td>Upper Ancillary Level to Plaza Level, Elevation</td>
<td>46</td>
<td>15</td>
<td>1.16</td>
<td>R4-A-202</td>
</tr>
<tr>
<td>Plaza Level</td>
<td>137</td>
<td>44</td>
<td>1.10</td>
<td>R4-A-102</td>
</tr>
<tr>
<td>To street area</td>
<td>10</td>
<td>3</td>
<td>0.08</td>
<td>ASSUME</td>
</tr>
<tr>
<td>T (total walking time)</td>
<td>224</td>
<td>74</td>
<td>8.50</td>
<td></td>
</tr>
</tbody>
</table>

Stairs from Platform to Concource

- Platform occupant load = 671
- Ext capacity = 372
- Q1 (platform clearing time) = occupant load / exit capacity
- W1 (waiting time) = Q1 - T1

Concourse central Corridor - Point of Safety

- Occupant load = 602
- Ext capacity = 1091
- Q2 (clearing time) = occupant load / exit capacity
- W2 (waiting time) = Q2 - Q1

Concourse - To Upper Ancillary level

- Occupant load = 602
- Ext capacity = 223
- Q3 (clearing time) = occupant load / exit capacity
- Max clearing time = 2.36
- W3 (waiting time) = Q3 - Max. Time

Plenum/Ancillary Level - To Plan level

- Occupant load = 502
- Ext capacity = 235
- Q4 (clearing time) = occupant load / exit capacity
- Max clearing time = 2.67
- W4 (waiting time) = Q4 - Max. Time

Plaza Level

- Occupant load = 602
- Ext capacity = 245
- Q5 (clearing time) = occupant load / exit capacity
- Max clearing time = 2.67
- W5 (waiting time) = Q5 - Max. Time

Total Time to reach Point of Safety

- Total exit time to street = T + W1 + W2 + W3 + W4 + W5

- **9.36 minutes** under 6 minutes

- **8.38 minutes**
Egress direction: Passenger starting from 50 ft West of Stair No. 3, travellng to concourse level and street level using Escalator 2s & 1a, Turnstiles and Hope street exit.

Walking Time For The Longest Exit Route

<table>
<thead>
<tr>
<th></th>
<th>ft</th>
<th>min</th>
</tr>
</thead>
<tbody>
<tr>
<td>On Platform</td>
<td></td>
<td>106</td>
</tr>
<tr>
<td>Platform to Concourse</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Concourse Level-Point of Safety</td>
<td></td>
<td>54</td>
</tr>
<tr>
<td>Concourse Level-2</td>
<td></td>
<td>87</td>
</tr>
<tr>
<td>Concourse Level to Upper Ancillary Level, Elevation</td>
<td></td>
<td>46</td>
</tr>
<tr>
<td>Upper Ancillary Level</td>
<td></td>
<td>64</td>
</tr>
<tr>
<td>Upper Ancillary Level to Plaza Level, Elevation</td>
<td></td>
<td>46</td>
</tr>
<tr>
<td>Plaza Level</td>
<td></td>
<td>137</td>
</tr>
<tr>
<td>To street area</td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

T (total walking time) = summation of T1 through T9 = 6.40 minutes

Stairs (from Platform to Concourse)

- **Platform occupant load**: 876
- **Exit capacity**: 372
- Q1 (Platform clearing time) = occupant load / exit capacity = 2.36
- W1 (waiting time) = Q1 - T1 = 1.51 minutes = 2.36

Under 4 minutes

(Concourse) central Corridor - Point of safety

- **Occupant load**: 602
- **Exit capacity**: 1098
- Q2 (clearing time) = occupant load / exit capacity = 0.55
- W2 (waiting time) = Q2 - Q1 = 0.00 minutes

(Concourse) - To Upper Ancillary level

- **Occupant load**: 502
- **Exit capacity**: 225
- Q3 (clearing time) = occupant load / exit capacity = 2.67
- Max clearing Time = 2.67
- W3 (waiting time) = Q3 - Max. Time = 0.31 minutes

Plium /Ancillary Level, To Plan level

- **Occupant load**: 602
- **Exit capacity**: 225
- Q4 (clearing time) = occupant load / exit capacity = 2.67
- Max clearing Time = 2.67
- W4 (waiting time) = Q4 - Max. Time = 0.00 minutes

Plaza Level

- **Occupant load**: 602
- **Exit capacity**: 225
- Q5 (clearing time) = occupant load / exit capacity = 2.46
- Max Clearing Time = 2.67
- W5 (waiting time) = Q5 - Max. Time = 0.00 minutes

Total Time to reach Point of Safety

- Total exit time to street = T + W1 + W2 + W3 + W4 +W5 = 3.20 minutes

Total exit time to street = 8.22 minutes

REGIONAL CONNECTOR TRANSIT CORRIDOR PROJECT

May 22, 2012
Walking Time For The Longest Exit Route

<table>
<thead>
<tr>
<th>Step Description</th>
<th>Distance (ft)</th>
<th>Time (min)</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>On Platform</td>
<td>T1</td>
<td>30</td>
<td>0.31</td>
</tr>
<tr>
<td>Platform to Concourse, Elevation</td>
<td>T2</td>
<td>16</td>
<td>0.40</td>
</tr>
<tr>
<td>Concourse Level=Point of Safety</td>
<td>T3</td>
<td>54</td>
<td>0.44</td>
</tr>
<tr>
<td>Concourse Level=To Upper Ancillary Level, Elevation</td>
<td>T4</td>
<td>07</td>
<td>0.70</td>
</tr>
<tr>
<td>Upper Ancillary Level</td>
<td>T5</td>
<td>46</td>
<td>1.15</td>
</tr>
<tr>
<td>Upper Ancillary Level=Pizza Level, Elevation</td>
<td>T6</td>
<td>64</td>
<td>0.52</td>
</tr>
<tr>
<td>Pizza Level</td>
<td>T7</td>
<td>46</td>
<td>1.10</td>
</tr>
<tr>
<td>To street area</td>
<td>T8</td>
<td>137</td>
<td>1.14</td>
</tr>
<tr>
<td>T (total walking time) = summation of T1 through T9</td>
<td></td>
<td>0.08</td>
<td></td>
</tr>
</tbody>
</table>

Stairs (from Platform to Concourse)

- Platform occupant load = 678
- Exit capacity = 312
- Q1 (platform clearing time) = occupant load / exit capacity
 - Q1 = 2.16 minutes

- W1 (waiting time) = Q1 - T1
 - W1 = 2.05 minutes

(Concourse) central Corridor Point of Safety

- Occupant load = 678
- Exit capacity = 1098
- Q2 (clearing time) = occupant load / exit capacity
 - Q2 = 0.61 minutes

(Concourse) To Upper Ancillary level

- Occupant load = 678
- Exit capacity = 225
- Q3 (clearing time) = occupant load / exit capacity
 - Q3 = 2.977 minutes

Plaza Level

- Occupant load = 678
- Exit capacity = 245
- Q5 (clearing time) = occupant load / exit capacity
 - Q5 = 2.457 minutes

Total Time to reach Point of Safety

- Total time to reach Point of Safety = 3.37 minutes
 - under 6 minutes

Total exit time to street = T + W1 + W2 + W3 + W4 + W5

- Total exit time to street = 8.12 minutes
 - under 6 minutes
Walking Time For The Longest Exit Route

<table>
<thead>
<tr>
<th>Route</th>
<th>Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>On Platform</td>
<td>T1: 53</td>
</tr>
<tr>
<td>Platform to Concourse, Elevation</td>
<td>T3: 54</td>
</tr>
<tr>
<td>Concourse Level-Pioint of Safety</td>
<td>T4: 87</td>
</tr>
<tr>
<td>Concourse Level-2</td>
<td>T5: 46</td>
</tr>
<tr>
<td>Concourse Level To Upper Ancillary Level, Elevation</td>
<td>T5: 46</td>
</tr>
<tr>
<td>Upper Ancillary Level</td>
<td>T6: 64</td>
</tr>
<tr>
<td>Upper Ancillary Level to Plaza Level, Elevation</td>
<td>T7: 48</td>
</tr>
<tr>
<td>Plaza Level</td>
<td>T8: 137</td>
</tr>
<tr>
<td>To street area</td>
<td>T9: 10</td>
</tr>
</tbody>
</table>

T (total walking time) = summation of T1 through T9 = 6.27

Stairs (from Platform to Concourse)
Platform occupant load = 875
Exit capacity = 372
G1 (platform clearing time) = occupant load / exit capacity = 2.36 minutes
W1 (waiting time) = G1 - T1 = 1.54 minutes

East Emergency Stairway (from Platform to Concourse)
Platform occupant load = 142
Exit capacity = 71
G2 (platform clearing time) = occupant load / exit capacity = 2.00 minutes
W2 (waiting time) = G2 - Q1 = 0.00 minutes

Concourse-East Emergency Stairway Corridor
Occupant load = 142
Exit capacity = 62
G3 (clearing time) = occupant load / exit capacity = 2.27 minutes
Max. clearing time = 2.36
W3 (waiting time) = G3 - Max. Time = 0.00 minutes

Roof Plan Level-East Emergency Corridor
Occupant load = 142
Exit capacity = 75
G4 (clearing time) = occupant load / exit capacity = 1.99 minutes
Max. clearing time = 2.36
W4 (waiting time) = G4 - Max. Time = 0.00 minutes

Roof Level-Emerg. Exit Hatch
Occupant load = 142
Exit capacity = 100
G6 (clearing time) = occupant load / exit capacity = 1.42 minutes
Max. clearing time = 2.36
W6 (waiting time) = G6 - Max. Time = 0.00 minutes

Total Time to reach Point of Safety = 5.20 minutes under 5 minutes
Total exit time to street = T + W1 + W2 + W3 + W4 + W6 + W6 = 7.91 minutes
2nd and Hope Station:
Passenger Load
Background:
Regional connector line 2nd & Hope Station total egress time is to be calculated based on NFPA-130 procedure to determine the required no. of street entrances to station for EIS.

Purpose:
To calculate the total platform occupant load for 2nd & Hope Station based on NFPA 130 assumptions and given Link Loads.

References
1.) NFPA-30 (2010 Edition)
2.) EW Peak Hourly Load Diagram
3.) NS Long Peak Hourly Load Diagram
4.) NS Short Peak Hourly Load Diagram
5.) Calc-001
6.) Email from Gulzar Ahmed dated October 12, 2011

Assumptions
1) Only One Train Detraining Passengers in the Peak Direction is considered based on Reference 6
2) Entraining load is based on passengers waiting to board trains on three different lines with a service disruption time of 12 minutes or one missed headway, whichever is higher, for the peak direction. A headway of 2.5 minutes is used for the off-peak direction.
A missed headway and service disruption time are not assumed for the off-peak direction.
3.) NS Long and Short line southbound Trains and EW line westbound train utilizes Northside platform track (Say No.1)
4.) NS Long and Short line northbound Trains and EW line eastbound train utilizes Southside platform track (Say No.2)
5) Surge Factor based on Reference 6.

Surge Factor 1.5
<table>
<thead>
<tr>
<th>NS Line (Long)</th>
<th>Southbound</th>
<th>Northbound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link Load</td>
<td>2343</td>
<td>1178</td>
</tr>
<tr>
<td>Detraining Load</td>
<td>142</td>
<td>205</td>
</tr>
<tr>
<td>Entraining Load</td>
<td>53</td>
<td>29</td>
</tr>
<tr>
<td>Peak Headway</td>
<td>10</td>
<td>min</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NS Line (Short)</th>
<th>Southbound</th>
<th>Northbound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link Load</td>
<td>1588</td>
<td>1090</td>
</tr>
<tr>
<td>Detraining Load</td>
<td>106</td>
<td>217</td>
</tr>
<tr>
<td>Entraining Load</td>
<td>65</td>
<td>30</td>
</tr>
<tr>
<td>Peak Headway</td>
<td>10</td>
<td>min</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EW Line</th>
<th>Westbound</th>
<th>Eastbound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link Load</td>
<td>1960</td>
<td>1323</td>
</tr>
<tr>
<td>Detraining Load</td>
<td>118</td>
<td>342</td>
</tr>
<tr>
<td>Entraining Load</td>
<td>131</td>
<td>55</td>
</tr>
<tr>
<td>Peak Headway</td>
<td>5</td>
<td>min</td>
</tr>
</tbody>
</table>

| Headway Time for Trains | 2.5 min |

Possible Train Schedule

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Trains</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>NSL</td>
</tr>
<tr>
<td>2.5</td>
<td>EW</td>
</tr>
<tr>
<td>5</td>
<td>NSS</td>
</tr>
<tr>
<td>7.5</td>
<td>EW</td>
</tr>
<tr>
<td>10</td>
<td>NSL</td>
</tr>
<tr>
<td>12.5</td>
<td>EW</td>
</tr>
<tr>
<td>15</td>
<td>NSS</td>
</tr>
<tr>
<td>17.5</td>
<td>EW</td>
</tr>
<tr>
<td>20</td>
<td>NSL</td>
</tr>
<tr>
<td></td>
<td>NS Line (Long)</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Peak Headway</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Southbound</td>
</tr>
<tr>
<td>Link Load</td>
<td>391</td>
</tr>
<tr>
<td></td>
<td>Ppl/train headway</td>
</tr>
<tr>
<td>Peak Headway</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Southbound</td>
</tr>
<tr>
<td>Link Load</td>
<td>265</td>
</tr>
<tr>
<td></td>
<td>Ppl/train headway</td>
</tr>
</tbody>
</table>
Platform Load

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Southbound Entraining Load for Track No. 1</td>
<td>249 Ppl/hr</td>
</tr>
<tr>
<td>Average Headway Time</td>
<td>2.5 min.</td>
</tr>
<tr>
<td>Total Entraining load for Track No. 1</td>
<td>11 Ppl/Train Headway</td>
</tr>
<tr>
<td>Max. Northbound Entraining Load for Track No. 2</td>
<td>114 Ppl/hr</td>
</tr>
<tr>
<td>Total Entraining load for Track No. 2</td>
<td>5 Ppl/Train Headway</td>
</tr>
</tbody>
</table>

Maximum Train Load (Crush Load) 795 ppl

Link Load

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Southbound Train Load per headway</td>
<td>391 Ppl/Train Headway</td>
</tr>
<tr>
<td>Max. Northbound Train peak Headway</td>
<td>196 Ppl/Train Headway</td>
</tr>
</tbody>
</table>

Entraining Load

Peak Direction (South Bound)

\[
\text{Peak Direction (South Bound)} = \frac{\text{[PEAK 15 MIN. LOAD} \times \text{Surge Factor} \times \text{MAX (2 x HEADWAY OR 12 MIN.)]} / 15 \quad 75}{\text{Ppl/Train Headway}}
\]

Off Peak Direction (North Bound)

\[
\text{Off Peak Direction (North Bound)} = \frac{\text{[OFF PEAK 15 MIN. LOAD} \times \text{Surge Factor} \times \text{(HEADWAY)]}} {15} \quad 8
\]

Total Detraining Load

795 ppl

Total Platform Occupant Load

878 ppl
E-W Line Regional Connector Stations
Peak Hour Boardings and Alightings

WESTBOUND

On	Off
154 | 68

1ST/UTAH

On	Off
2,031 | 876

CENTRAL/2ND

On	Off
139 | 200

1,970 | 1,001

2ND/SPRING-BROADWAY

On	Off
33 | 43

1,960 | 1,036

Flower between 3rd and 2nd

On	Off
131 | 118

1,973 | 1,323

7TH ST./FLOWER

On	Off
2,154 | 869

598 | 902

3,258 | 1,627

PICO BL/FLOWER

On	Off
102 | 132

91 | 87

Reference 2
N-S Line (Long) Azusa/Citrus to Long Beach
(Regional Connector Stations)
Peak Hour Boardings and Alightings

SOUTHBOUND
On	Off
529 | 270

On	Off
35 | 93

SOUTHBOUND
On	Off
2,408 | 893

NORTHBOUND
On	Off
240 | 189

On	Off
35 | 93

On	Off
9 | 16

On	Off
2,350 | 972

On	Off
18 | 97

On	Off
2,343 | 1,002

On	Off
4 | 34

On	Off
29 | 205

On	Off
2,254 | 1,178

On	Off
291 | 142

On	Off
791 | 142

On	Off
2,903 | 1,747

On	Off
46 | 231

On	Off
57 | 58

Reference 3
N-S Line (Short) Siera Madre Villa to Long Beach (Regional Connector Stations)

Peak Hour Boardings and Alightings

<table>
<thead>
<tr>
<th>SOUTHBOUND</th>
<th>Off</th>
<th>NORTHBOUND</th>
<th>Off</th>
</tr>
</thead>
<tbody>
<tr>
<td>On</td>
<td></td>
<td>On</td>
<td></td>
</tr>
<tr>
<td>551</td>
<td>228</td>
<td>192</td>
<td>221</td>
</tr>
</tbody>
</table>

[Diagram showing boardings and alightings between stations]

Reference 4
For calculated train load Metro Fire/Life Safety Criteria, Section 2.5.2.1.A has the following requirement.

The following limitations to the calculated train load shall be applied:

a. No more than one train will unload at any one track to a platform during an emergency.
b. The load on any single train is limited to the maximum train capacity.
c. The calculated train load can be no less than the maximum passenger capacity of a single train.

With above limitations the occupant load for emergency exiting calculations for Century City Constellation station will be as follows.

CALCULATED TRAIN LOAD

MAXIMUM CAPACITY OF A SINGLE TRAIN (6 cars per train) = 1446
(61 seated = 180 Standing = 261 per car x 6 = 1446)

ENTRAINING LOAD

PEAK (Westbound) ENTRAINING LOAD = \[PEAK 15 MIN. LOAD \times MAX (2 \times HEADWAY OR 12 MIN)] / 15
\[= \{(193 \times 1.5)/4 \times (12/15)\} = 59\]

OFF PEAK (Eastbound) ENTRAINING LOAD = \[(OFF PEAK 15 MIN. LOAD \times (HEADWAY)) / 15
\[= \{(328 \times 1.5)/4 \times (4/15)\} = 33\]

TOTAL ENTRAINING LOAD = 59 + 33 = 92

TOTAL OCCUPANT LOAD FOR CALCULATION = CALCULATED TRAIN LOAD + TOTAL ENTRAINING LOAD
TRUE
2nd and Broadway Station:
Egress Capacity Calculations
Assumptions:
1. Platform occupant load was calculated based on NFPA 130 Standard (2010 edition).
2. One escalator at each level was assumed to be out of service.
3. The Concourse area would be ventilated as per NFPA 130 criteria and is considered as a point of safety.
4. The time to open the Exit Hatch is not included.

Summary
1. The platform clearance time complies with the 4-minute criteria required by NFPA 130.
2. The evacuation time from the platform to the platform emergency stairs complies with the 6-minute NFPA 130 criteria.
3. The longest time for the last occupant to reach a point of safety is 3.42 minutes. The longest time for the last occupant to reach street level is 8.77 minutes.

<table>
<thead>
<tr>
<th>Route</th>
<th>Egress Paths</th>
<th>Clearing Platform</th>
<th>To a Point of Safety</th>
<th>To Street</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Time (min)</td>
<td>4-minute criteria?</td>
<td>Point of safety:</td>
</tr>
<tr>
<td>1</td>
<td>Platform to Concourse through West Emergency stairway (No. 3), and then to street level through Exit Hatch No. 1</td>
<td>2.37</td>
<td>Pass</td>
<td>Concourse</td>
</tr>
<tr>
<td>1a</td>
<td>Platform to Concourse through West Emergency stairway (No. 3), and then to street level through Exit Hatch No. 1 (passengers split)</td>
<td>2.37</td>
<td>Pass</td>
<td>Concourse</td>
</tr>
<tr>
<td>2</td>
<td>Platform to Concourse through West Emergency stairway (No. 3), and then to street level through West/ 2nd street Exit.</td>
<td>2.37</td>
<td>Pass</td>
<td>Concourse</td>
</tr>
<tr>
<td>3</td>
<td>Platform to Concourse through West Escalator (No. 3) , and then to street Level through West/ 2nd street Exit.</td>
<td>2.37</td>
<td>Pass</td>
<td>Concourse</td>
</tr>
<tr>
<td>4</td>
<td>Platform to Concourse through East stairway (No. 5) , and then to street level West/ 2nd street Exit.</td>
<td>2.37</td>
<td>Pass</td>
<td>Concourse</td>
</tr>
<tr>
<td>5</td>
<td>Platform to Concourse through East Emergency stairway (No. 6) , and then to street Level through West/ 2nd street Exit.</td>
<td>2.37</td>
<td>Pass</td>
<td>Concourse</td>
</tr>
<tr>
<td>6</td>
<td>Platform to Concourse through East Emergency stairway (No. 6), and then to street level through Exit Hatch No. 3.</td>
<td>2.37</td>
<td>Pass</td>
<td>Concourse</td>
</tr>
<tr>
<td>6a</td>
<td>Platform to Concourse through East Emergency stairway (No. 6), and then to street level through Exit Hatch No. 3. (passengers split)</td>
<td>2.37</td>
<td>Pass</td>
<td>Concourse</td>
</tr>
<tr>
<td>Element</td>
<td>Persons per inch</td>
<td>Person per minute</td>
<td>Travel Speed (fpm)</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>Platforms, Corridors, and Ramps.</td>
<td>2.08</td>
<td>---</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>Stairs and Escalators (see note 1):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i) Up direction:</td>
<td>1.31</td>
<td>---</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>(ii) Down direction:</td>
<td>1.41</td>
<td>---</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Doors and Gates (single leaf)</td>
<td>---</td>
<td>60</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Doors and Gates (multi-leaf)</td>
<td>2.08</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Turnstiles</td>
<td>---</td>
<td>25</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Exit Hatch</td>
<td>2.08</td>
<td></td>
<td>Assume</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. NFPA 130 Standard, Section 5.5.6.3.2.3 specifies the capacity and travel speed for stairs/escalators but does not indicate whether the values are dependent on the travel direction. However, the examples in Annex C indicate that the capacity and travel speed for the up direction are 1.31 pm and 40 fpm, respectively, and the capacity and speed for the down direction are 1.41 pm and 48 fpm, respectively.

2. NFPA 130 Standard, Section 5.5.6.3.5.2 specifies that turnstile-type fare collection gates shall have a capacity of 25 people per minute for egress calculations. Therefore assume a capacity of 25 people per minute for all turnstiles.
One escalator at each level is assumed to be out of service (per NFPA 130 2010 edition, Section 5.5.6.3.2.6).

Express Elements:

<table>
<thead>
<tr>
<th>Route</th>
<th>Direction</th>
<th>No. of Units</th>
<th>Width (m)</th>
<th>Persons per inch per minute</th>
<th>Persons per minute per unit</th>
<th>Total people per minute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platform to Lower Concourse:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergency Stair No. 3 Door</td>
<td>Up</td>
<td>1</td>
<td>45</td>
<td>60</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Stair No. 4</td>
<td>Up</td>
<td>1</td>
<td>66</td>
<td>1.31</td>
<td>86</td>
<td>86</td>
</tr>
<tr>
<td>Stair No. 5</td>
<td>Up</td>
<td>1</td>
<td>66</td>
<td>1.31</td>
<td>86</td>
<td>86</td>
</tr>
<tr>
<td>Escalator No. 3</td>
<td>Up</td>
<td>1</td>
<td>46</td>
<td>1.31</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>-</td>
<td>Up</td>
<td>0</td>
<td>46</td>
<td>1.31</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Escalator No. 4</td>
<td>Up</td>
<td>0</td>
<td>40</td>
<td>1.31</td>
<td>52</td>
<td>52</td>
</tr>
<tr>
<td>-</td>
<td>Up</td>
<td>0</td>
<td>40</td>
<td>1.31</td>
<td>52</td>
<td>52</td>
</tr>
<tr>
<td>Emergency Stair No. 6 Door</td>
<td>Up</td>
<td>1</td>
<td>48</td>
<td>1.31</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Total: 345</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total stairs: 226</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Excl. Emerg. Stairway at Station End)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Platform to Concourse through Emergency Stairway:						
Emergency Stair No. 3	Up	1	63	1.31	83	83
Emergency Stair No. 6	Up	1	63	1.31	83	83
Total: 165						
Total stairs: 83						
(Excluding East Emergency Stairway)						

Concourse Center:						
Concourse Corridor	Up	1	432	2.08	599	599
Escalator No. 2a	Up	1	40	1.31	52	52
Stair No. 2	Up	1	66	1.31	86	86
Escalator No. 2a	Up	0	40	1.31	52	52
(1 Escalator out of service)						
Total stairs: 225						
(Excluding Corridor)						

Concourse West Emergency Stairway Level						
Emergency Stairway No. 3 (West)	Up	1	63	1.31	83	83
Corridor						
Two Leaf Door—all, rou.	Up	1	72	2.08	150	150
Corridor						
Single Leaf Door	Up	1	66	1.31	86	86
Corridor						
Emergency Stairway No. 7(West)	Up	1	54	2.08	150	150
Towards Concourse Center						
all, rou.—Corridor						
Two Leaf Door						
Total: 225						
(Excluding Corridor)						

Concourse East Emergency Stairway Level						
Emergency Stairway No. 6 (East)	Up	1	63	1.31	83	83
Corridor						
Two Leaf Door—all, rou.	Up	1	72	2.08	150	150
Corridor						
Single Leaf Door	Up	1	72	2.08	150	150
Corridor						
Emergency Stairway No. 8 (East)	Up	1	63	1.31	83	83
Towards Concourse Center						
all, rou.—Corridor						
Two Leaf Door						
Total: 225						
(Subtract 12° for each sidewalk, 08-2°12)						

R E G I O N A L C O N N E C T O R T R A N S I T C O R R I D O R P R O J E C T

May 22, 2012
One escalator at each level is assumed to be out of service (per NFPA 130 2010 edition, Section 5.5.6.3.2.6).

<table>
<thead>
<tr>
<th>Egress Elements:</th>
<th>Route</th>
<th>Direction</th>
<th>No. of Units</th>
<th>Width (m)</th>
<th>Persons per inch</th>
<th>Person per minute</th>
<th>Person per unit</th>
<th>Total people</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premium/Antricial Level</td>
<td>Corridor</td>
<td>1</td>
<td>2.58</td>
<td>2.08</td>
<td>537</td>
<td>537</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Escalator No. 1a</td>
<td>Up</td>
<td>1</td>
<td>40</td>
<td>1.31</td>
<td>52</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stair No. 1</td>
<td>Up</td>
<td>1</td>
<td>66</td>
<td>1.31</td>
<td>66</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stair No. 1a</td>
<td>Up</td>
<td>1</td>
<td>66</td>
<td>1.31</td>
<td>66</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Escalator No. 1b</td>
<td>Up</td>
<td>0</td>
<td>40</td>
<td>1.31</td>
<td>52</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Emergency Stairway No. 8 (East)</td>
<td>Up</td>
<td>1</td>
<td>63</td>
<td>1.31</td>
<td>83</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Emergency Stairway No. 7 (West)</td>
<td>Up</td>
<td>1</td>
<td>63</td>
<td>1.31</td>
<td>83</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Corridor</td>
<td>1</td>
<td>72</td>
<td>2.08</td>
<td>150</td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Single Leaf Door</td>
<td>1</td>
<td>36</td>
<td>1.31</td>
<td>60</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Corridor</td>
<td>1</td>
<td>120</td>
<td>2.08</td>
<td>250</td>
<td>250</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Stairway & Escalator</td>
<td></td>
<td></td>
<td>225</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roof Level:</td>
<td>West Corridor</td>
<td>1</td>
<td>48</td>
<td>2.08</td>
<td>100</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>West side Exit Stairway No. 1</td>
<td>Up</td>
<td>1</td>
<td>42</td>
<td>1.31</td>
<td>55</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>West side Exit Stairway No. 2</td>
<td>Up</td>
<td>1</td>
<td>42</td>
<td>1.31</td>
<td>55</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>West side Exit Hatch 1</td>
<td></td>
<td></td>
<td>48</td>
<td>3.08</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>West side Exit Hatch 2</td>
<td></td>
<td></td>
<td>48</td>
<td>3.08</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>East Corridor</td>
<td>1</td>
<td>30</td>
<td>2.08</td>
<td>62</td>
<td>62</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>East side Exit Stairway No. 3</td>
<td>Up</td>
<td>1</td>
<td>42</td>
<td>1.31</td>
<td>55</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>East side Exit Stairway No. 4</td>
<td>Up</td>
<td>1</td>
<td>42</td>
<td>1.31</td>
<td>55</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>East side Exit Hatch 3</td>
<td></td>
<td></td>
<td>48</td>
<td>3.08</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>East side Exit Hatch 4</td>
<td></td>
<td></td>
<td>48</td>
<td>3.08</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Plaza Level Plan:</td>
<td>Entrance Passageway:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Turnstile</td>
<td>6</td>
<td>25</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gate</td>
<td>2</td>
<td>60</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Broadway Side Exit Door</td>
<td>1</td>
<td>72</td>
<td>2.08</td>
<td>150</td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>W. 2nd Street Side Door</td>
<td>1</td>
<td>216</td>
<td>2.08</td>
<td>449</td>
<td>449</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>270</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Excluding W-2nd Street Side Door
Platform Occupant Load

<table>
<thead>
<tr>
<th>Platform</th>
<th>Occupant load from ancillary rooms in passenger area</th>
<th>Total Platform Occupant Load</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>917</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Egress capacity (ppm)</th>
<th>Percent</th>
<th>Number of passengers</th>
</tr>
</thead>
<tbody>
<tr>
<td>89</td>
<td>95.2%</td>
<td>533</td>
</tr>
</tbody>
</table>

Concourse Occupant Load

<table>
<thead>
<tr>
<th>Concourse</th>
<th>Occupant load from ancillary rooms in passenger area</th>
<th>Total Concourse Occupant Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>West Area</td>
<td>142 (from platforms)</td>
<td>742</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Egress capacity (ppm)</th>
<th>Percent</th>
<th>Number of passengers</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>28.8%</td>
<td>41</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>East Area</th>
<th>Occupant load from ancillary rooms in passenger area</th>
<th>Total East Area Occupant Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>142 (from platforms)</td>
<td>744</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Egress capacity (ppm)</th>
<th>Percent</th>
<th>Number of passengers</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>28.8%</td>
<td>41</td>
</tr>
</tbody>
</table>

Concourse Center Area Occupant Load

<table>
<thead>
<tr>
<th>Concourse Center Area</th>
<th>Occupant load from ancillary rooms in passenger area</th>
<th>Total Concourse Center Area Occupant Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>744 (from platforms)</td>
<td>744</td>
<td>744</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Egress capacity (ppm)</th>
<th>Percent</th>
<th>Number of passengers</th>
</tr>
</thead>
<tbody>
<tr>
<td>173</td>
<td>76.7%</td>
<td>571</td>
</tr>
</tbody>
</table>

Plenum/Ancillary Level

<table>
<thead>
<tr>
<th>Plenum West Area</th>
<th>Occupant load from concourse West Area</th>
<th>Total Plenum West Area Occupant Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>83 (West)</td>
<td>124</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Egress capacity (ppm)</th>
<th>Percent</th>
<th>Number of passengers</th>
</tr>
</thead>
<tbody>
<tr>
<td>57.9%</td>
<td>24</td>
<td>24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plenum Center Area</th>
<th>Total Plenum Center Area Occupant Load</th>
<th>Total Plenum Level Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>744</td>
<td>744 (from Concourse Center Area)</td>
<td>744</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Egress capacity (ppm)</th>
<th>Percent</th>
<th>Number of passengers</th>
</tr>
</thead>
<tbody>
<tr>
<td>76.7%</td>
<td>584</td>
<td>584</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stairways (Plaza Level / Street)</th>
<th>Occupant load from concourse West Area</th>
<th>Total Stairways Occupant Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>177 (from Plaza Level / Street)</td>
<td>177</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Egress capacity (ppm)</th>
<th>Percent</th>
<th>Number of passengers</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.0%</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Roof Level</th>
<th>West Corridor Occupant Load</th>
<th>Total Roof Level Occupant Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>From Concourse West Area</td>
<td>24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Egress capacity (ppm)</th>
<th>Percent</th>
<th>Number of passengers</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.0%</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Roof Level</th>
<th>East Corridor Occupant Load</th>
<th>Total Roof Level Occupant Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>From Concourse West Area</td>
<td>41</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Egress capacity (ppm)</th>
<th>Percent</th>
<th>Number of passengers</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.0%</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

REGIONAL CONNECTOR TRANSIT CORRIDOR PROJECT

May 22, 2012
Plaza

<table>
<thead>
<tr>
<th>Plaza Occupant Load</th>
<th>761</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Plaza Occupant Load</td>
<td>761 (From Plenum Level)</td>
</tr>
<tr>
<td>Total Plaza / Street Level Load</td>
<td>825 (from Lower Level)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Egress</th>
<th>Percent</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turnstile (Plaza Level/ Street)</td>
<td>150</td>
<td>35.7%</td>
</tr>
<tr>
<td>Fare Gates</td>
<td>120</td>
<td>28.6%</td>
</tr>
<tr>
<td>S Broadway Side Exit</td>
<td>150</td>
<td>35.7%</td>
</tr>
<tr>
<td>Total:</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>
Walking Time For The Longest Exit Route

<table>
<thead>
<tr>
<th>Location Description</th>
<th>ft</th>
<th>Min</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>On Platform</td>
<td>40</td>
<td>124</td>
<td>T1</td>
</tr>
<tr>
<td>Platform to Concourse Elevation</td>
<td>10.0</td>
<td>40</td>
<td>T2</td>
</tr>
<tr>
<td>Concourse Level</td>
<td>38</td>
<td>124</td>
<td>T3</td>
</tr>
<tr>
<td>Concourse Level-2</td>
<td>60</td>
<td>124</td>
<td>T4</td>
</tr>
<tr>
<td>Concourse Level To roof Level, Elevation</td>
<td>55</td>
<td>40</td>
<td>T5</td>
</tr>
<tr>
<td>Roof Level</td>
<td>41</td>
<td>124</td>
<td>T6</td>
</tr>
<tr>
<td>Street level Stairway from Roof Level, Elevation</td>
<td>8.0</td>
<td>40</td>
<td>T7</td>
</tr>
<tr>
<td>To safe area</td>
<td>10</td>
<td>124</td>
<td>T8</td>
</tr>
<tr>
<td>Total walking time</td>
<td>2.37</td>
<td>3.92</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Stairs (from Platform to Concourse): Platform occupant load = 246, Exit capacity = 81, (platform clearing time) = occupant load / exit capacity = 3.76 minutes
- W1 (waiting time) = Q1 - T1 = 2.06 minutes

- West Emergency Stairway (from Platform to Concourse): Platform occupant load = 142, Exit capacity = 81, (platform clearing time) = occupant load / exit capacity = 1.76 minutes
- W2 (waiting time) = Q2 - Q1 = 0.00 minutes

- [Concourse]: West Corridor - 1: Occupant load = 142, Exit capacity = 81, (clearing time) = occupant load / exit capacity = 1.76 minutes
- W3 (waiting time) = Q3 - Max. Time = 0.00 minutes

- [Concourse]: West Double Door - 2: Occupant load = 142, Exit capacity = 81, (clearing time) = occupant load / exit capacity = 1.76 minutes
- W4 (waiting time) = Q4 - Max. time = 0.00 minutes

- [Concourse]: West Corridor - 2: Occupant load = 142, Exit capacity = 81, (clearing time) = occupant load / exit capacity = 1.76 minutes
- W5 (waiting time) = Q5 - Max. Time = 0.00 minutes

- [Concourse]: West Single Door - 2: Occupant load = 142, Exit capacity = 81, (clearing time) = occupant load / exit capacity = 1.76 minutes
- W6 (waiting time) = Q6 - Max. Time = 0.00 minutes

- [Concourse]: West Corridor - 3: Occupant load = 142, Exit capacity = 81, (clearing time) = occupant load / exit capacity = 1.76 minutes
- W7 (waiting time) = Q7 - Max. Time = 0.00 minutes
Regional Connector Transit Corridor Project

May 22, 2012

Egress direction: Passenger starting from 15 ft East of stairway No. 3, travelling to concourse level and street level using stairway No. 7 and Emergency Exit Hatch No. 1

(To Roof Level) Stairway

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupant load</td>
<td>142</td>
</tr>
<tr>
<td>Exit capacity</td>
<td>83</td>
</tr>
<tr>
<td>Q8 (clearing time) = occupant load / exit capacity</td>
<td>1.72 minutes</td>
</tr>
<tr>
<td>Max Flow Time</td>
<td>2.37</td>
</tr>
<tr>
<td>W8 (waiting time) = Q8 - Max. Time</td>
<td>0.00 minutes</td>
</tr>
</tbody>
</table>

Roof Level - West Corridor

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupant load</td>
<td>142</td>
</tr>
<tr>
<td>Exit capacity</td>
<td>100</td>
</tr>
<tr>
<td>Q8 (clearing time) = occupant load / exit capacity</td>
<td>1.42 minutes</td>
</tr>
<tr>
<td>Max Flow Time</td>
<td>2.37</td>
</tr>
<tr>
<td>W8 (waiting time) = Q8 - Max. Time</td>
<td>0.00 minutes</td>
</tr>
</tbody>
</table>

Roof Level - Emerg. Stairway No. 1

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupant load</td>
<td>71</td>
</tr>
<tr>
<td>Exit capacity</td>
<td>55</td>
</tr>
<tr>
<td>Q10 (clearing time) = occupant load / exit capacity</td>
<td>1.26 minutes</td>
</tr>
<tr>
<td>Max Flow Time</td>
<td>2.37</td>
</tr>
<tr>
<td>W10 (waiting time) = Q10 - Max. Time</td>
<td>0.00 minutes</td>
</tr>
</tbody>
</table>

Roof Level - Emerg. Exit Hatch No. 1

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupant load</td>
<td>71</td>
</tr>
<tr>
<td>Exit capacity</td>
<td>100</td>
</tr>
<tr>
<td>Q11 (clearing time) = occupant load / exit capacity</td>
<td>0.71 minutes</td>
</tr>
<tr>
<td>Max Flow Time</td>
<td>2.37</td>
</tr>
<tr>
<td>W11 (waiting time) = Q11 - Max. Time</td>
<td>0.00 minutes</td>
</tr>
</tbody>
</table>

Total Time to reach Point of Safety: 3.07 minutes under 0 minutes

Total exit time to street = T + W1 + W2 + W3 + W4 +...+W11: 5.63 minutes
Walking Time For The Longest Exit Route

<table>
<thead>
<tr>
<th>Element Description</th>
<th>Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platform to Concourse, Elevation</td>
<td>0.40</td>
</tr>
<tr>
<td>Concourse Level Point of Safety</td>
<td>0.31</td>
</tr>
<tr>
<td>Concourse Level 2</td>
<td>0.55</td>
</tr>
<tr>
<td>Concourse Level To roof Level, Elevation</td>
<td>1.38</td>
</tr>
<tr>
<td>Roof Level</td>
<td>0.33</td>
</tr>
<tr>
<td>Street Level Stairway from Roof Level, Elevation</td>
<td>0.22</td>
</tr>
<tr>
<td>To exit area</td>
<td>0.08</td>
</tr>
<tr>
<td>Total walking time = summation of T1 through T8</td>
<td>3.58</td>
</tr>
</tbody>
</table>

Stairs (from Platform to Concourse)

- Platform occupant load = 345
- Exit capacity = 142
- Q1 (platform clearing time) = occupant load / exit capacity
- W1 (waiting time) = Q1 - T1

Emergency Stairway (from Platform to Concourse)

- Exit capacity = 83
- Q2 (platform clearing time) = occupant load / exit capacity
- W2 (waiting time) = Q2 - Q1

Concourse-West Corridor - 1

- Occupant load = 142
- Exit capacity = 81
- Q3 (clearing time) = occupant load / exit capacity
- W3 (waiting time) = Q3 - Max. Time

Concourse-West Double Door - 1

- Occupant load = 142
- Exit capacity = 150
- Q4 (clearing time) = occupant load / exit capacity
- W4 (waiting time) = Q4 - Max. Time

Concourse-West Corridor - 2

- Occupant load = 141
- Exit capacity = 200
- Q5 (clearing time) = occupant load / exit capacity
- W5 (waiting time) = Q5 - Max. Time

Concourse-West Single Door - 2

- Occupant load = 41
- Exit capacity = 60
- Q6 (clearing time) = occupant load / exit capacity
- W6 (waiting time) = Q6 - Max. Time

Note

- All values are approximate and based on assumed passenger split at every level depending on the egress element capacity.
Route 1a

Egress direction: Passenger starting from 15 ft East of stairway No. 3, travelling to concourse level and street level using stairway No. 7 and Emergency Exit Hatch No. 1

<table>
<thead>
<tr>
<th>(From Concourse-West Corridor)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupant load =</td>
<td>41</td>
</tr>
<tr>
<td>Exit capacity =</td>
<td>112</td>
</tr>
<tr>
<td>Q7 (clearing time) = occupant load / exit capacity</td>
<td>0.30 minutes</td>
</tr>
<tr>
<td>Max. clearing Time</td>
<td>2.37</td>
</tr>
<tr>
<td>W7 (waiting time) = Q7 - Max. Time</td>
<td>0.00 minutes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(To Roof Level)-Stairway</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupant load =</td>
<td>41</td>
</tr>
<tr>
<td>Exit capacity =</td>
<td>83</td>
</tr>
<tr>
<td>Q6 (clearing time) = occupant load / exit capacity</td>
<td>0.49 minutes</td>
</tr>
<tr>
<td>Max. clearing Time</td>
<td>2.37</td>
</tr>
<tr>
<td>W6 (waiting time) = Q6 - Max. Time</td>
<td>0.00 minutes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Roof Level-West Corridor</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupant load =</td>
<td>24</td>
</tr>
<tr>
<td>Exit capacity =</td>
<td>100</td>
</tr>
<tr>
<td>Q9 (clearing time) = occupant load / exit capacity</td>
<td>0.24 minutes</td>
</tr>
<tr>
<td>Max. Flow Time</td>
<td>2.37</td>
</tr>
<tr>
<td>W9 (waiting time) = Q9 - Max. Time</td>
<td>0.00 minutes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Roof Level-Emerg. Stairway No. 7</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupant load =</td>
<td>12</td>
</tr>
<tr>
<td>Exit capacity =</td>
<td>55</td>
</tr>
<tr>
<td>Q10 (clearing time) = occupant load / exit capacity</td>
<td>0.21 minutes</td>
</tr>
<tr>
<td>Max. clearing Time</td>
<td>2.37</td>
</tr>
<tr>
<td>W10 (waiting time) = Q10 - Max. Time</td>
<td>0.00 minutes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Roof Level-Emerg. Exit Hatch No. 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupant load =</td>
<td>12</td>
</tr>
<tr>
<td>Exit capacity =</td>
<td>120</td>
</tr>
<tr>
<td>Q11 (clearing time) = occupant load / exit capacity</td>
<td>Assume</td>
</tr>
<tr>
<td>Max. clearing Time</td>
<td>2.37</td>
</tr>
<tr>
<td>W11 (waiting time) = Q11 - Max. Time</td>
<td>0.00 minutes</td>
</tr>
</tbody>
</table>

| Total Time to reach Point of Safety | 3.07 minutes | under 6 minutes |
| Total exit time to street = T + W1 + W2 + W3 + W4 +...+W11 | 5.63 minutes |
Walking Time For The Longest Exit Route

<table>
<thead>
<tr>
<th>Stage</th>
<th>ft</th>
<th>min</th>
</tr>
</thead>
<tbody>
<tr>
<td>On Platform</td>
<td>T1</td>
<td>40</td>
</tr>
<tr>
<td>Platform to Concourse, Elevation</td>
<td>T2</td>
<td>16</td>
</tr>
<tr>
<td>Concourse Level - Point of Safety</td>
<td>T3</td>
<td>32</td>
</tr>
<tr>
<td>Concourse Level - 2</td>
<td>T4</td>
<td>123</td>
</tr>
<tr>
<td>Concourse Level - 2 to Platform Level, Elevation</td>
<td>T5</td>
<td>22</td>
</tr>
<tr>
<td>Platform Level</td>
<td>T6</td>
<td>54</td>
</tr>
<tr>
<td>Platform Level to Plaza Level, Elevation</td>
<td>T7</td>
<td>46</td>
</tr>
<tr>
<td>Plaza Level</td>
<td>T8</td>
<td>60</td>
</tr>
<tr>
<td>To Street Area</td>
<td>T9</td>
<td>10</td>
</tr>
<tr>
<td>Total Walking Time</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stairs (from Platform to Concourse):

<table>
<thead>
<tr>
<th>Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platform occupant load</td>
</tr>
<tr>
<td>Exit capacity</td>
</tr>
<tr>
<td>Q1 (platform clearing time) = occupant load / exit capacity</td>
</tr>
<tr>
<td>W1 (waiting time) = Q1 - T1</td>
</tr>
</tbody>
</table>

West Emergency Stairway (from Platform to Concourse):

<table>
<thead>
<tr>
<th>Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platform occupant load</td>
</tr>
<tr>
<td>Exit capacity</td>
</tr>
<tr>
<td>Q2 (platform clearing time) = occupant load / exit capacity</td>
</tr>
<tr>
<td>W2 (waiting time) = Q2 - Q1</td>
</tr>
</tbody>
</table>

Concourse-West Corridor - 1:

<table>
<thead>
<tr>
<th>Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupant load</td>
</tr>
<tr>
<td>Exit capacity</td>
</tr>
<tr>
<td>Q3 (clearing time) = occupant load / exit capacity</td>
</tr>
<tr>
<td>Max. clearing time</td>
</tr>
<tr>
<td>W3 (waiting time) = Q3 - Max. Time</td>
</tr>
</tbody>
</table>

Concourse-West Double Door - 1:

<table>
<thead>
<tr>
<th>Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupant load</td>
</tr>
<tr>
<td>Exit capacity</td>
</tr>
<tr>
<td>Q4 (clearing time) = occupant load / exit capacity</td>
</tr>
<tr>
<td>Max. clearing time</td>
</tr>
<tr>
<td>W4 (waiting time) = Q4 - Max. Time</td>
</tr>
</tbody>
</table>

Concourse-West Corridor - 2:

<table>
<thead>
<tr>
<th>Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupant load</td>
</tr>
<tr>
<td>Exit capacity</td>
</tr>
<tr>
<td>Q5 (clearing time) = occupant load / exit capacity</td>
</tr>
<tr>
<td>Max. clearing time</td>
</tr>
<tr>
<td>W5 (waiting time) = Q5 - Max. Time</td>
</tr>
</tbody>
</table>

Concourse-West Double Door - 2 (Towards Concourse Center Area):

<table>
<thead>
<tr>
<th>Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupant load</td>
</tr>
<tr>
<td>Exit capacity</td>
</tr>
<tr>
<td>Q6 (clearing time) = occupant load / exit capacity</td>
</tr>
<tr>
<td>Max. clearing time</td>
</tr>
<tr>
<td>W6 (waiting time) = Q6 - Max. Time</td>
</tr>
</tbody>
</table>

Concourse:

<table>
<thead>
<tr>
<th>Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupant load</td>
</tr>
<tr>
<td>Exit capacity</td>
</tr>
</tbody>
</table>
Egress direction: Passenger starting from 15 ft East of stairway No. 3, travelling to concourse level and street level using Escalator 1a & 2a, turnstiles and West 2nd street exit.

<table>
<thead>
<tr>
<th>Route 2</th>
<th>0.94 minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 (clearing time)</td>
<td>3.30 minutes</td>
</tr>
<tr>
<td>Max clearing Time</td>
<td>2.57</td>
</tr>
<tr>
<td>W7 (waiting time)</td>
<td>Q7 - Max. Time</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plemun/Ancillary Level</th>
<th>West Area Door 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupant load</td>
<td>17</td>
</tr>
<tr>
<td>Exit capacity</td>
<td>60</td>
</tr>
<tr>
<td>Q6 (clearing time)</td>
<td>0.28 minutes</td>
</tr>
<tr>
<td>Max. clearing Time</td>
<td>3.30</td>
</tr>
<tr>
<td>W8 (waiting time)</td>
<td>Q8 - Max. Time</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plemun/Ancillary Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupant load</td>
</tr>
<tr>
<td>Exit capacity</td>
</tr>
<tr>
<td>Q9 (clearing time)</td>
</tr>
<tr>
<td>Max. clearing Time</td>
</tr>
<tr>
<td>W9 (waiting time)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plaza Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupant load</td>
</tr>
<tr>
<td>Exit capacity</td>
</tr>
<tr>
<td>Q10 (clearing time)</td>
</tr>
<tr>
<td>Max. clearing Time</td>
</tr>
<tr>
<td>W10 (waiting time)</td>
</tr>
</tbody>
</table>

Total Time to reach Point of Safety: 3.07 minutes under 0 minutes
Total exit time to street: T + W1 + W2 + W3 + W4 + ... W10 8.07 minutes
Walking Time For The Longest Exit Route

<table>
<thead>
<tr>
<th>Exit Route Description</th>
<th>ft</th>
<th>mm</th>
<th>Minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>On Platform</td>
<td>95</td>
<td>124</td>
<td>0.77</td>
</tr>
<tr>
<td>Platform to Concourse, Elevation</td>
<td>16</td>
<td>40</td>
<td>0.40</td>
</tr>
<tr>
<td>Concourse Level, Point of Safety</td>
<td>26</td>
<td>124</td>
<td>0.21</td>
</tr>
<tr>
<td>Concourse Level-2</td>
<td>55</td>
<td>124</td>
<td>0.44</td>
</tr>
<tr>
<td>Concourse Level To Plenum Level, Elevation</td>
<td>22</td>
<td>40</td>
<td>0.55</td>
</tr>
<tr>
<td>Plenum Level</td>
<td>64</td>
<td>124</td>
<td>0.52</td>
</tr>
<tr>
<td>Plenum Level to Plaza Level, Elevation</td>
<td>46</td>
<td>40</td>
<td>1.16</td>
</tr>
<tr>
<td>Plaza Level</td>
<td>80</td>
<td>124</td>
<td>0.65</td>
</tr>
<tr>
<td>To street area</td>
<td>10</td>
<td>124</td>
<td>0.08</td>
</tr>
<tr>
<td>Total walking time = summation of T1 through T9</td>
<td></td>
<td></td>
<td>4.77</td>
</tr>
</tbody>
</table>

Stairs from Platform to Concourse:

- Platform occupant load = 817
- Exit capacity = 345
- Q1 (platform clearing time) = occupant load / exit capacity
- W1 (waiting time) = Q1 - T1

Concourse central Corridor, Point of Safety:

- Occupant load = 744
- Exit capacity = 899
- Q2 (clearing time) = occupant load / exit capacity
- W2 (waiting time) = Q2 - Q1

Concourse:

- Occupant load = 744
- Exit capacity = 225
- Q3 (clearing time) = occupant load / exit capacity
- Max clearing Time
- W3 (waiting time) = Q3 - Max. Time

Plenum/Ancillary Level:

- Occupant load = 701
- Exit capacity = 225
- Q4 (clearing time) = occupant load / exit capacity
- Max clearing Time
- W4 (waiting time) = Q4 - Max. Time

Plaza Level:

- Occupant load = 701
- Exit capacity = 270
- Q5 (clearing time) = occupant load / exit capacity
- Max clearing Time
- W5 (waiting time) = Q5 - Max. Time

Total Time to reach Point of Safety:

- Total exit time to street = T + W1 + W2 + W3 + W4 + W5
- 2.98 minutes

Total exit time to street = W1 + W2 + W3 + W4 + W5
- 7.38 minutes
Walking Time For The Longest Exit Route

<table>
<thead>
<tr>
<th>Step Description</th>
<th>t (sec)</th>
<th>t (min)</th>
<th>Minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>On Platform</td>
<td>T1</td>
<td>104</td>
<td>1.73</td>
</tr>
<tr>
<td>Platform to Concourse, Elevation</td>
<td>T2</td>
<td>16</td>
<td>0.27</td>
</tr>
<tr>
<td>Concourse Level-Point of Safety</td>
<td>T3</td>
<td>81</td>
<td>1.36</td>
</tr>
<tr>
<td>Concourse Level-2</td>
<td>T4</td>
<td>55</td>
<td>0.92</td>
</tr>
<tr>
<td>Concourse Level To Piermade Level, Elevation</td>
<td>T5</td>
<td>22</td>
<td>0.37</td>
</tr>
<tr>
<td>Piermade Level</td>
<td>T6</td>
<td>64</td>
<td>1.07</td>
</tr>
<tr>
<td>Piermade Level to Plaza Level, Elevation</td>
<td>T7</td>
<td>48</td>
<td>0.80</td>
</tr>
<tr>
<td>Plaza Level</td>
<td>T8</td>
<td>80</td>
<td>1.33</td>
</tr>
<tr>
<td>To street area</td>
<td>T9</td>
<td>10</td>
<td>0.17</td>
</tr>
<tr>
<td>T (total walking time) = summation of T1 through T9</td>
<td></td>
<td></td>
<td>5.29</td>
</tr>
</tbody>
</table>

Stairs (from Platform to Concourse)

<table>
<thead>
<tr>
<th>Step Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platform occupant load</td>
<td>817</td>
</tr>
<tr>
<td>Exit capacity</td>
<td>345</td>
</tr>
<tr>
<td>Q1 (waiting time) = occupant load / exit capacity</td>
<td></td>
</tr>
<tr>
<td>Q1 (waiting time) = occupant load / exit capacity</td>
<td>2.37</td>
</tr>
<tr>
<td>W1 (waiting time) = Q1 - T1</td>
<td>1.53</td>
</tr>
<tr>
<td>W1 (waiting time) = Q1 - T1</td>
<td>2.37</td>
</tr>
<tr>
<td>W1 (waiting time) = Q1 - T1</td>
<td>2.37</td>
</tr>
</tbody>
</table>

Concourse Level-Point of Safety

<table>
<thead>
<tr>
<th>Step Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupant load</td>
<td>744</td>
</tr>
<tr>
<td>Exit capacity</td>
<td>890</td>
</tr>
<tr>
<td>Q2 (clearing time) = occupant load / exit capacity</td>
<td></td>
</tr>
<tr>
<td>Q2 (clearing time) = occupant load / exit capacity</td>
<td>0.83</td>
</tr>
<tr>
<td>W2 (waiting time) = Q2 - Q1</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Concourse Level

<table>
<thead>
<tr>
<th>Step Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupant load</td>
<td>744</td>
</tr>
<tr>
<td>Exit capacity</td>
<td>225</td>
</tr>
<tr>
<td>Q3 (clearing time) = occupant load / exit capacity</td>
<td></td>
</tr>
<tr>
<td>Q3 (clearing time) = occupant load / exit capacity</td>
<td>3.38</td>
</tr>
<tr>
<td>W3 (waiting time) = Q3 - Max. Time</td>
<td>0.94</td>
</tr>
<tr>
<td>W3 (waiting time) = Q3 - Max. Time</td>
<td>2.37</td>
</tr>
<tr>
<td>W3 (waiting time) = Q3 - Max. Time</td>
<td>2.37</td>
</tr>
</tbody>
</table>

Piermade/Accessory Level

<table>
<thead>
<tr>
<th>Step Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupant load</td>
<td>761</td>
</tr>
<tr>
<td>Exit capacity</td>
<td>225</td>
</tr>
<tr>
<td>Q4 (clearing time) = occupant load / exit capacity</td>
<td></td>
</tr>
<tr>
<td>Q4 (clearing time) = occupant load / exit capacity</td>
<td>3.30</td>
</tr>
<tr>
<td>W4 (waiting time) = Q4 - Max. Time</td>
<td>0.06</td>
</tr>
<tr>
<td>W4 (waiting time) = Q4 - Max. Time</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Plaza Level

<table>
<thead>
<tr>
<th>Step Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupant load</td>
<td>761</td>
</tr>
<tr>
<td>Exit capacity</td>
<td>270</td>
</tr>
<tr>
<td>Q5 (clearing time) = occupant load / exit capacity</td>
<td></td>
</tr>
<tr>
<td>Q5 (clearing time) = occupant load / exit capacity</td>
<td>2.82</td>
</tr>
<tr>
<td>Max clearing time</td>
<td>3.38</td>
</tr>
<tr>
<td>W5 (waiting time) = Q5 - Max. Time</td>
<td>0.00</td>
</tr>
<tr>
<td>W5 (waiting time) = Q5 - Max. Time</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Total Time to reach Point of Safety

<table>
<thead>
<tr>
<th>Total exit time to street = T + W1 + W2 + W3 + W4 + W5</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total exit time to street = T + W1 + W2 + W3 + W4 + W5</td>
<td>3.42</td>
</tr>
<tr>
<td>Total exit time to street = T + W1 + W2 + W3 + W4 + W5</td>
<td>under 6 minutes</td>
</tr>
<tr>
<td>Total exit time to street = T + W1 + W2 + W3 + W4 + W5</td>
<td>7.83</td>
</tr>
<tr>
<td>Total exit time to street = T + W1 + W2 + W3 + W4 + W5</td>
<td>minutes</td>
</tr>
</tbody>
</table>
Walking Time For The Longest Exit Route

<table>
<thead>
<tr>
<th>Route</th>
<th>ft</th>
<th>min</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>On Platform</td>
<td>51</td>
<td>124</td>
<td>0.41</td>
</tr>
<tr>
<td>Platform to Concourse, Elevation</td>
<td>16</td>
<td>40</td>
<td>0.40</td>
</tr>
<tr>
<td>Concourse Level Point of Safety</td>
<td>23</td>
<td>124</td>
<td>0.19</td>
</tr>
<tr>
<td>Concourse Level - 2</td>
<td>229</td>
<td>124</td>
<td>1.85</td>
</tr>
<tr>
<td>Concourse Level to Plenum Level, Elevation</td>
<td>22</td>
<td>40</td>
<td>0.55</td>
</tr>
<tr>
<td>Plenum Level</td>
<td>64</td>
<td>124</td>
<td>0.52</td>
</tr>
<tr>
<td>Plenum Level to Plaza Level, Elevation</td>
<td>48</td>
<td>40</td>
<td>1.16</td>
</tr>
<tr>
<td>Plaza Level</td>
<td>80</td>
<td>124</td>
<td>0.65</td>
</tr>
<tr>
<td>To Safe Area</td>
<td>10</td>
<td>124</td>
<td>0.08</td>
</tr>
<tr>
<td>T (total walking time)</td>
<td>5.80</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stairs (from Platform to Concourse)
- Platform occupant load = 817
- Exit capacity = 345
- G1 (platform clearing time) = occupant load / exit capacity = 2.37 minutes
- W1 (waiting time) = G1 - T1 = 1.85 minutes

East Emergency Stairway (from Platform to Concourse)
- Platform occupant load = 142
- Exit capacity = 83
- G2 (platform clearing time) = occupant load / exit capacity = 1.72 minutes
- W2 (waiting time) = G2 - G1 = 0.00 minutes = 2.37 under 4 minutes

[Concourse] East Corridor - 1
- Occupant load = 142
- Exit capacity = 150
- G3 (clearing time) = occupant load / exit capacity = 0.95 minutes
- Max. clearing time = 2.37
- W3 (waiting time) = G3 - Max. Time = 0.00 minutes

[Concourse] East Double Door - 1
- Occupant load = 101
- Exit capacity = 150
- G4 (clearing time) = occupant load / exit capacity = 0.60 minutes
- Max. clearing time = 2.37
- W4 (waiting time) = G4 - Max. Time = 0.00 minutes

[Concourse] East Double Door - 2
- Occupant load = 101
- Exit capacity = 150
- G5 (clearing time) = occupant load / exit capacity = 0.60 minutes
- Max. clearing time = 2.37
- W5 (waiting time) = G5 - Max. Time = 0.00 minutes

[Concourse] East Corridor - 2
- Occupant load = 151
- Exit capacity = 200
- G6 (clearing time) = occupant load / exit capacity = 0.51 minutes
- Max. clearing time = 2.37
- W6 (waiting time) = G6 - Max. Time = 0.00 minutes

[Concourse] East Door - 3
- Occupant load = 101
- Exit capacity = 150
- G7 (clearing time) = occupant load / exit capacity = 0.65 minutes
- Max. clearing time = 2.37
| Location | Occupant load | Exit capacity | Q8 (clearing time) | Max. clearing Time | W8 (waiting time) | Q8 - Max. Time | W8 (waiting time) | Q8 - Max. Time | W8 (waiting time) | Q8 - Max. Time | W8 (waiting time) | Q8 - Max. Time | W8 (waiting time) | Q8 - Max. Time | W8 (waiting time) | Q8 - Max. Time | W8 (waiting time) | Q8 - Max. Time | W8 (waiting time) | Q8 - Max. Time | W8 (waiting time) | Q8 - Max. Time | |
|---|
| Concourse | 744 | 225 | 3.30 minutes | 2.37 | 0.94 minutes | | | | | | | | | | | | | | | | | |
| Plaza Level | 761 | 225 | 3.30 minutes | 3.30 | 0.08 minutes | | | | | | | | | | | | | | | | | | |
| Total Time to reach Point of Safety | 2.66 minutes | under 6 minutes | | | | | | | | | | | | | | | | | | | | | |
| Total exit time to street = T = W1 + W2 + W3 + W4 +...+W11 | 8.76 minutes | | | | | | | | | | | | | | | | | | | | | | |
| Route6 | | | |

Egress directions: Passenger starting from 36 ft East of Stair No 6, Travelling to concourse level and street level using Stairway No. 6, 8, Stairway (No. 3) Exit Hatch No. 3.

Walking Time For The Longest Exit Route

<table>
<thead>
<tr>
<th>Stage (from Platform to Concourse)</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>T7</th>
<th>T8</th>
</tr>
</thead>
<tbody>
<tr>
<td>On Platform</td>
<td>51</td>
<td>16</td>
<td>23</td>
<td>27</td>
<td>42</td>
<td>45</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>Platform to Concourse, Elevation</td>
<td>124</td>
<td>40</td>
<td>124</td>
<td>124</td>
<td>40</td>
<td>124</td>
<td>40</td>
<td>124</td>
</tr>
<tr>
<td>Concourse Level-Platform of Safety</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concourse Level To Roof Level, Elevation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roof Level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Street level Stairway from Roof Level, Elevation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>To safe area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T (total walking time) = summation of T1 through T8</td>
<td>2.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Time (in minutes)

- **T1**: 0.41 minutes
- **T2**: 0.40 minutes
- **T3**: 0.19 minutes
- **T4**: 0.22 minutes
- **T5**: 1.05 minutes
- **T6**: 0.36 minutes
- **T7**: 0.22 minutes
- **T8**: 0.08 minutes

Notes

- **AS-036**: Assume
- **under 4 minutes**: Max. clearing Time

May 22, 2012
Egress direction: Passenger starting from 36 ft East of Stair No 6, travelling to concourse level and street level using Stairway No. 6, 8, Stairway (No. 3) Exit Hatch No. 3.

To Roof Level - Stairway
- Occupant load: 142
- Exit capacity: 83
- Q3 (clearing time) = occupant load / exit capacity: 1.72 minutes
- Max. clearing Time: 2.37 minutes
- W3 (waiting time) = Q3 - Max. Time: 0.00 minutes

At Roof Level - East Corridor
- Occupant load: 142
- Exit capacity: 82
- Q9 (clearing time) = occupant load / exit capacity: 2.27 minutes
- Max. clearing Time: 2.37 minutes
- W9 (waiting time) = Q9 - Max. Time: 0.00 minutes

Roof Level - Emerg. Stairway no. 3
- Occupant load: 71
- Exit capacity: 55
- Q10 (clearing time) = occupant load / exit capacity: 1.29 minutes
- Max. clearing Time: 2.37 minutes
- W10 (waiting time) = Q10 - Max. Time: 0.00 minutes

Roof Level - Emerg. Exit Hatch, 3
- Occupant load: 71
- Exit capacity: 100
- Q11 (clearing time) = occupant load / exit capacity: Assume
- Max. clearing Time: 0.71 minutes
- W11 (waiting time) = Q11 - Max. Time: 0.00 minutes

Total Time to reach Point of Safety
- Total exit time to street = T + W1 + W2 + W3 + W4 +...+W11
- Total time: 2.95 minutes under 6 minutes
- Total exit time to street: 4.88 minutes
Egress direction: Passenger starting from 35 ft East of Stair No. 6, travelling to concourse level and street level using Stairway No. 6, 8, Stairway (No. 5) Exit Hatch No. 3. Assuming passengers split at every level depending upon the egress element capacity.

Walking Time For The Longest Exit Route

<table>
<thead>
<tr>
<th>Route</th>
<th>time</th>
<th>t</th>
<th>pmp</th>
<th>Minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>On Platform</td>
<td>T1</td>
<td>51</td>
<td>124</td>
<td>0.41</td>
</tr>
<tr>
<td>Platform to Concourse, Elevation</td>
<td>T2</td>
<td>16</td>
<td>40</td>
<td>0.40</td>
</tr>
<tr>
<td>Concourse Level - Point of Safety</td>
<td>T3</td>
<td>23</td>
<td>124</td>
<td>0.19</td>
</tr>
<tr>
<td>Concourse Level - 2</td>
<td>T4</td>
<td>27</td>
<td>124</td>
<td>0.22</td>
</tr>
<tr>
<td>Concourse Level To Roof Level, Elevation</td>
<td>T5</td>
<td>42</td>
<td>40</td>
<td>1.05</td>
</tr>
<tr>
<td>Roof Level</td>
<td>T6</td>
<td>45</td>
<td>124</td>
<td>0.36</td>
</tr>
<tr>
<td>Street level Stairway from Roof Level, Elevation</td>
<td>T7</td>
<td>9</td>
<td>40</td>
<td>0.22</td>
</tr>
<tr>
<td>To Safe Area</td>
<td>T8</td>
<td>10</td>
<td>124</td>
<td>0.08</td>
</tr>
</tbody>
</table>

T (total walking time) = summation of T1 through T8

2.33

Stairs (from Platform to Concourse)

Platform occupant load = 817
Exit capacity = 345
G1 (platform clearing time) = occupant load / exit capacity = 2.37 minutes
W1 (waiting time) = G1 - T1 = 1.55 minutes

East Emergency Stairway (from Platform to Concourse)

Platform occupant load = 142
Exit capacity = 93
G2 (platform clearing time) = occupant load / exit capacity = 1.72 minutes
W2 (waiting time) = G2 - Q1 = 0.00 minutes

Concourse-East Corridor-1

Occupant load = 142
Exit capacity = 150
G3 (clearing time) = occupant load / exit capacity = 0.95 minutes
Max. clearing time = 2.37
W3 (waiting time) = G3 - Max. Time = 0.06 minutes

Concourse-East Double Door-1

Occupant load = 142
Exit capacity = 150
G4 (clearing time) = occupant load / exit capacity = 0.95 minutes
Max. clearing time = 1.72
W4 (waiting time) = G4 - Max. Time = 0.00 minutes

Concourse-East Corridor-2

Occupant load = 142
Exit capacity = 150
G5 (clearing time) = occupant load / exit capacity = 0.95 minutes
Max. clearing time = 2.37
W5 (waiting time) = G5 - Max. Time = 0.06 minutes

Concourse-East Single Door-2

Occupant load = 41
Exit capacity = 60
G6 (clearing time) = occupant load / exit capacity = 0.68 minutes
Max. clearing time = 2.37
W6 (waiting time) = G6 - Max. Time = 0.00 minutes

Concourse-East Corridor-3

Occupant load = 41
Exit capacity = 150
G7 (clearing time) = occupant load / exit capacity = 0.27 minutes
Max. clearing time = 2.37
W7 (waiting time) = G7 - Max. Time = 0.00 minutes
Egress direction: Passenger starting from 35 ft East of Stair No 6, Travelling to concourse level and street level using Stairway No. 6, 8, Stairway (No. 3) Exit Hatch No. 3.

<table>
<thead>
<tr>
<th>(To Roof Level)-Stairway</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupant load</td>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exit capacity</td>
<td>83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q0 (clearing time)</td>
<td>0.49 minutes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. clearing Time</td>
<td>2.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W8 (waiting time)</td>
<td>0.00 minutes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(At Roof Level)-East Corridor</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupant load</td>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exit capacity</td>
<td>62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q9 (clearing time)</td>
<td>0.65 minutes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. clearing Time</td>
<td>2.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W9 (waiting time)</td>
<td>0.00 minutes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Roof Level -Emerg. Stairway no. 3</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupant load</td>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exit capacity</td>
<td>55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q10 (clearing time)</td>
<td>0.74 minutes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max Flow Time</td>
<td>2.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W10 (waiting time)</td>
<td>0.00 minutes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Roof Level -Emerg. Exit Hatch. 3</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupant load</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exit capacity</td>
<td>Assume</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q11 (clearing time)</td>
<td>0.20 minutes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. clearing Time</td>
<td>2.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W11 (waiting time)</td>
<td>0.00 minutes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Time to reach Point of Safety: 2.95 minutes under 6 minutes

Total exit time to street = T + W1 + W2 + W3 + W4 + ... + W11: 4.08 minutes
Background:
Regional connector line 2nd/Broadway Station total egress time is to be calculated based on NFPA-130 procedure to determine the required no. of street entrances to station for EIS.

Purpose:
To calculate the total platform occupant load for 2nd/Broadway Station based on NFPA 130 assumptions and given Link Loads.

References
1.) NFPA-30 (2010 Edition)
2.) EW Peak Hourly Load Diagram
3.) NS Long Peak Hourly Load Diagram
4.) NS Short Peak Hourly Load Diagram
5) Calc-001
6) Email from Gulzar Ahmed dated October 12, 2011

Assumptions
1) Only One Train Detraining Passengers in the Peak Direction is considered based on Reference 6.
2) Entraining load is based on passengers waiting to board trains on three different lines with a service disruption time of 12 minutes or one missed headway, whichever is higher, for the peak direction. A headway of 2.5 minutes is used for the off-peak direction. A missed headway and service disruption time are not assumed for the off-peak direction.
3.) NS Long and Short line southbound Trains and EW line westbound train utilizes Northside platform track (Say No.1)
4.) NS Long and Short line northbound Trains and EW line eastbound train utilizes Southside platform track (Say No.2)
5) Surge Factor based on Reference 6.

Surge Factor: 1.5
NS Line (Long)

<table>
<thead>
<tr>
<th></th>
<th>Southbound</th>
<th>Northbound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link Load</td>
<td>2350</td>
<td>1002</td>
</tr>
<tr>
<td>Detraining Load</td>
<td>16</td>
<td>34</td>
</tr>
<tr>
<td>Entraining Load</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>Peak Headway</td>
<td>10 min</td>
<td></td>
</tr>
</tbody>
</table>

NS Line (Short)

<table>
<thead>
<tr>
<th></th>
<th>Southbound</th>
<th>Northbound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link Load</td>
<td>1591</td>
<td>903</td>
</tr>
<tr>
<td>Detraining Load</td>
<td>22</td>
<td>45</td>
</tr>
<tr>
<td>Entraining Load</td>
<td>19</td>
<td>13</td>
</tr>
<tr>
<td>Peak Headway</td>
<td>10 min</td>
<td></td>
</tr>
</tbody>
</table>

EW Line

<table>
<thead>
<tr>
<th></th>
<th>Westbound</th>
<th>Eastbound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link Load</td>
<td>1970</td>
<td>1036</td>
</tr>
<tr>
<td>Detraining Load</td>
<td>43</td>
<td>54</td>
</tr>
<tr>
<td>Entraining Load</td>
<td>33</td>
<td>19</td>
</tr>
<tr>
<td>Peak Headway</td>
<td>5</td>
<td>19</td>
</tr>
</tbody>
</table>

Headway Time for Trains: 2.5 min

Possible Train Schedule

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Trains</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>NSL</td>
</tr>
<tr>
<td>2.5</td>
<td>EW</td>
</tr>
<tr>
<td>5</td>
<td>NSS</td>
</tr>
<tr>
<td>7.5</td>
<td>EW</td>
</tr>
<tr>
<td>10</td>
<td>NSL</td>
</tr>
<tr>
<td>12.5</td>
<td>EW</td>
</tr>
<tr>
<td>15</td>
<td>NSS</td>
</tr>
<tr>
<td>17.5</td>
<td>EW</td>
</tr>
<tr>
<td>20</td>
<td>NSL</td>
</tr>
<tr>
<td>NS Line (Long)</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Peak Headway</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Link Load</td>
<td>392</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NS Line (Short)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Headway</td>
<td>10</td>
<td>min</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Southbound</td>
<td>Northbound</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Link Load</td>
<td>265</td>
<td>Ppl/train headway</td>
<td>151</td>
<td>Ppl/train headway</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EW Line</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Headway</td>
<td>5</td>
<td>min</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Westbound</td>
<td>Eastbound</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Link Load</td>
<td>164</td>
<td>Ppl/train headway</td>
<td>86</td>
<td>Ppl/train headway</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Platform Load
- Max. Southbound Entraining Load for Track No. 1: 61 Ppl/hr
- Average Headway Time: 2.5 Min.
- Total Entraining Load for Track No. 1: 3 Ppl/Train Headway
- Max. Northbound Entraining Load for Track No. 2: 36 Ppl/hr
- Total Entraining Load for Track No. 2: 2 Ppl/Train Headway

Max. Train Load (Crush Load): 795 Ppl

Link Load
- Max. Southbound Train Load per headway: 392 Ppl/Train Headway
- Max. Northbound Train peak Headway: 167 Ppl/Train Headway

Entraining Load

Peak Direction (South Bound)
\[
\text{Peak Direction (South Bound)} = \frac{\text{[PEAK 15 MIN. LOAD} \times \text{Surge Factor} \times \text{MAX} (2 \times \text{HEADWAY} \text{ OR 12 MIN.})]}{15} = 19
\]

Off Peak Direction (North Bound)
\[
\text{Off Peak Direction (North Bound)} = \frac{[\text{OFF PEAK 15 MIN. LOAD} \times \text{Surge Factor} \times \text{[HEADWAY]}]}{15} = 3
\]

Total Detraining Load: 795 Ppl

Total Platform Occupant Load: 817 Ppl
E-W Line Regional Connector Stations
Peak Hour Boardings and Alightings

WESTBOUND
On	Off
154 | 68

1ST/UTAH
2,031

CENTRAL/2ND
On	Off
139 | 200

2ND/SPRING-BROADWAY
On	Off
33 | 43

Flower between 3rd and 2nd
On	Off
131 | 118

7TH ST./FLOWER
On	Off
2,154 | 869

PICO BL/FLOWER
On	Off
102 | 132

EASTBOUND
On	Off
70 | 93

876

On	Off
33 | 158

1,001

On	Off
19 | 54

1,036

On	Off
55 | 342

1,323

On	Off
598 | 902

1,627

On	Off
91 | 87

Reference 2
N-S Line (Long) Azusa/Citrus to Long Beach (Regional Connector Stations)
Peak Hour Boardings and Alightings

<table>
<thead>
<tr>
<th>SOUTHBOUND On</th>
<th>Off</th>
</tr>
</thead>
<tbody>
<tr>
<td>529</td>
<td>270</td>
</tr>
<tr>
<td>2,408</td>
<td></td>
</tr>
<tr>
<td>2,350</td>
<td></td>
</tr>
<tr>
<td>2,343</td>
<td></td>
</tr>
<tr>
<td>1,002</td>
<td></td>
</tr>
<tr>
<td>2,254</td>
<td></td>
</tr>
<tr>
<td>2,903</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NORTHBOUND On</th>
<th>Off</th>
</tr>
</thead>
<tbody>
<tr>
<td>240</td>
<td>189</td>
</tr>
<tr>
<td>893</td>
<td></td>
</tr>
<tr>
<td>97</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>34</td>
</tr>
<tr>
<td>29</td>
<td>205</td>
</tr>
<tr>
<td>386</td>
<td>955</td>
</tr>
<tr>
<td>57</td>
<td>58</td>
</tr>
</tbody>
</table>

Reference 3
N-S Line (Short) Siera Madre Villa to Long Beach (Regional Connector Stations)
Peak Hour Boardings and Alightings

<table>
<thead>
<tr>
<th>Southbound</th>
<th>Northbound</th>
</tr>
</thead>
<tbody>
<tr>
<td>On 551</td>
<td>Off 228</td>
</tr>
<tr>
<td>Central/2nd On 50 Off 89</td>
<td></td>
</tr>
<tr>
<td>On 1,630</td>
<td>Off 785</td>
</tr>
<tr>
<td>2nd/Spring-Broadway On 19 Off 22</td>
<td></td>
</tr>
<tr>
<td>On 1,591</td>
<td>Off 871</td>
</tr>
<tr>
<td>7th St./Flower On 65 Off 106</td>
<td></td>
</tr>
<tr>
<td>On 1,547</td>
<td>Off 1,090</td>
</tr>
<tr>
<td>7th St./Flower On 807 Off 554</td>
<td></td>
</tr>
<tr>
<td>On 1,800</td>
<td>Off 1,762</td>
</tr>
<tr>
<td>7th St./Flower On 55 Off 153</td>
<td></td>
</tr>
</tbody>
</table>

Reference 4
For calculated train load, Metro Fire/Life Safety Criteria, Section 2.5.2.1.A has the following requirement.

The following limitations to the calculated train load shall be applied:

a. No more than one train will unload at any one track to a platform during an emergency.
 b. The load on any single train is limited to the maximum train capacity.
 c. The calculated train load can be no less than the maximum passenger capacity of a single train.

With above limitations, the occupant load for emergency exiting calculations for Century City Constellation station will be as follows.

CALCULATED TRAIN LOAD

MAXIMUM CAPACITY OF A SINGLE TRAIN (6 cars per train) = 1446
(61 Seated + 180 Standing = 241 per car x 6 = 1446)

ENTRAINING LOAD

\[
\text{PEAK (Westbound) ENTRAINING LOAD} = \frac{\text{PEAK 15 MIN. LOAD} \times \text{MAX } (2 \times \text{HEADWAY OR 12 MIN.})}{15} = \frac{(1.95 \times 1.5)}{4} \times (12/15) = 59
\]

\[
\text{OFF PEAK (Eastbound) ENTRAINING LOAD} = \frac{\text{OFF PEAK 15 MIN. LOAD} \times (\text{HEADWAY})}{15} = \frac{(1.32 \times 1.5)}{4} \times (4/15) = 33
\]

TOTAL ENTRAINING LOAD = 59 + 33 = 92

TOTAL OCCUPANT LOAD FOR CALCULATION = **CALCULATED TRAIN LOAD** + **TOTAL ENTRAINING LOAD**

TRUE
1st and Central Station: Egress Capacity Calculations
Assumptions:
1. Platform occupant load was calculated based on NFPA 130 Standard (2010 edition).
2. One escalator at each level was assumed to be out of service.
3. The Concourse area would be ventilated as per NFPA 130 criteria and is considered as a point of safety.
4. The time to open the Exit Hatch is not included.

Summary
1. The platform clearance time complies with the 4-minute criteria required by NFPA 130.
2. The evacuation time from the platform to the platform emergency stairs complies with the 6-minute NFPA 130 criteria.
3. The longest time for the last occupant to reach a point of safety is 3.37 minutes. The longest time for the last occupant to reach street level is 8.39 minutes.

<table>
<thead>
<tr>
<th>Route</th>
<th>Egress Paths</th>
<th>Clearing Platform Time (min)</th>
<th>4-minute criteria?</th>
<th>Point of safety at:</th>
<th>To a Point of Safety Time (min)</th>
<th>6-minute criteria?</th>
<th>To Street Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Platform to Concourse through West Emergency stairway (No. 5), and then to street level through Emergency Stair No. 7 and Exit Hatch No. 1</td>
<td>2.44</td>
<td>Pass</td>
<td>Concourse</td>
<td>3.25</td>
<td>Pass</td>
<td>4.26</td>
</tr>
<tr>
<td>1a</td>
<td>Platform to Concourse through West Emergency stairway (No. 5), and then to street level through Emergency Stair No. 7 and Exit Hatch No. 1a (passengers split on concourse)</td>
<td>2.44</td>
<td>Pass</td>
<td>Concourse</td>
<td>3.25</td>
<td>Pass</td>
<td>4.26</td>
</tr>
<tr>
<td>2</td>
<td>Platform to Concourse through West Emergency (No. 5), and then to street Level through South Entrance Exit</td>
<td>2.44</td>
<td>Pass</td>
<td>Concourse</td>
<td>3.25</td>
<td>Pass</td>
<td>5.90</td>
</tr>
<tr>
<td>3</td>
<td>Platform to Concourse through West Stairway (No. 3), Turnstiles, and then to street level North Entrance Exit</td>
<td>2.44</td>
<td>Pass</td>
<td>Concourse</td>
<td>3.06</td>
<td>Pass</td>
<td>5.33</td>
</tr>
<tr>
<td>4</td>
<td>Platform to Concourse through West Escalator (No. 3), Turnstiles, and then to street level South Entrance Exit</td>
<td>2.44</td>
<td>Pass</td>
<td>Concourse</td>
<td>3.06</td>
<td>Pass</td>
<td>4.91</td>
</tr>
<tr>
<td>4a</td>
<td>Platform to Concourse through West Escalator (No. 3), Turnstiles, and then to street level North Entrance Exit</td>
<td>2.44</td>
<td>Pass</td>
<td>Concourse</td>
<td>3.06</td>
<td>Pass</td>
<td>4.99</td>
</tr>
<tr>
<td>5</td>
<td>Platform to Concourse through East Emergency stairway (No. 6), and then to street level through Emergency Stair No. 8 and Exit Hatch No. 2</td>
<td>2.44</td>
<td>Pass</td>
<td>Concourse</td>
<td>3.14</td>
<td>Pass</td>
<td>3.80</td>
</tr>
<tr>
<td>5a</td>
<td>Platform to Concourse through East Emergency stairway (No. 6), and then to street level through Emergency Stair No. 8 and Exit Hatch No. 2 (passenger split)</td>
<td>2.44</td>
<td>Pass</td>
<td>Concourse</td>
<td>3.14</td>
<td>Pass</td>
<td>3.80</td>
</tr>
<tr>
<td>6</td>
<td>Platform to Concourse through East Emergency stairway (No. 6), and then to street level through South Entrance Exit</td>
<td>2.44</td>
<td>Pass</td>
<td>Concourse</td>
<td>3.14</td>
<td>Pass</td>
<td>5.15</td>
</tr>
<tr>
<td>Element</td>
<td>Persons per inch per minute</td>
<td>Person per minute per unit</td>
<td>Travel Speed (fpm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------------------</td>
<td>----------------------------</td>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platforms, Corridors, and Ramps.</td>
<td>2.08</td>
<td>---</td>
<td>124</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stairs and Escalators (see note 1):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i) Up direction:</td>
<td>1.31</td>
<td>---</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ii) Down direction:</td>
<td>1.41</td>
<td>---</td>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doors and Gates (single leaf)</td>
<td>---</td>
<td>0.0</td>
<td>Section 5.5.6.3.4.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doors and Gates (multi-leaf)</td>
<td>2.08</td>
<td>---</td>
<td>Section 5.5.6.3.4.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turnstiles</td>
<td>---</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exit Hatch</td>
<td>2.08</td>
<td>---</td>
<td>Assume</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. NFPA 130 Standard, Section 6.5.6.3.2.2.3 specifies the capacity and travel speed for stairs/escalators but does not indicate whether the values are dependent on the travel direction. However, the examples in Annex C indicate that the capacity and travel speed for the **up** direction are 1.31 pm and 40 fpm, respectively, and the capacity and speed for the **down** direction are 1.41 pm and 48 fpm, respectively.

2. NFPA 130 Standard, Section 5.5.6.3.5.2 specifies that turnstile-type fare collection gates shall have a capacity of 25 people per minute for egress calculations. Therefore assume a capacity of 25 people per minute for all turnstiles.
Egress Capacity

One escalator at each level is assumed to be out of service (per NFPA 130 2010 edition, Section 5.5.6.3.2.6).

Egress Elements:

<table>
<thead>
<tr>
<th>Element</th>
<th>Direction</th>
<th>No. of Units</th>
<th>Width (m)</th>
<th>Persons per inch</th>
<th>Persons per minute</th>
<th>Total people per unit</th>
<th>Total people per minute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platform to Concourse:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergency Stair No 5 Door (West End)</td>
<td>Up</td>
<td>1</td>
<td>36</td>
<td>1.31</td>
<td>86</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Stair No 3</td>
<td>Up</td>
<td>1</td>
<td>66</td>
<td>1.31</td>
<td>86</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>Stair No 4</td>
<td>Up</td>
<td>1</td>
<td>66</td>
<td>1.31</td>
<td>86</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>Escalator No. 2</td>
<td>Up</td>
<td>0</td>
<td>48</td>
<td>1.31</td>
<td>63</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Escalator No. 3</td>
<td>Up</td>
<td>0</td>
<td>48</td>
<td>1.31</td>
<td>63</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>Up</td>
<td>0</td>
<td>46</td>
<td>1.31</td>
<td>60</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>Up</td>
<td>0</td>
<td>46</td>
<td>1.31</td>
<td>60</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Emergency Stair No 6 Door (East End)</td>
<td>Up</td>
<td>1</td>
<td>36</td>
<td>1.31</td>
<td>86</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>316</td>
<td></td>
</tr>
<tr>
<td>Sub Total Stairs:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>216</td>
<td></td>
</tr>
</tbody>
</table>

(Excluding emergency stairs at station ends)

<table>
<thead>
<tr>
<th>Element</th>
<th>Direction</th>
<th>No. of Units</th>
<th>Width (m)</th>
<th>Persons per inch</th>
<th>Persons per minute</th>
<th>Total people per unit</th>
<th>Total people per minute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platform to Concourse through Emergency Stairway:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>West Emergency Stairway Corridor</td>
<td>Up</td>
<td>1</td>
<td>38</td>
<td>2.08</td>
<td>79</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>Emergency Stair No. 5</td>
<td>Up</td>
<td>1</td>
<td>48</td>
<td>1.31</td>
<td>63</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>East Emergency Stairway Corridor</td>
<td>Up</td>
<td>1</td>
<td>76</td>
<td>2.08</td>
<td>155</td>
<td>155</td>
<td></td>
</tr>
<tr>
<td>Emergency Stair No. 6</td>
<td>Up</td>
<td>1</td>
<td>48</td>
<td>1.31</td>
<td>63</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>343</td>
<td></td>
</tr>
<tr>
<td>Sub Total:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>142</td>
<td></td>
</tr>
</tbody>
</table>

(Excluding East emergency stairs & corridor)

<table>
<thead>
<tr>
<th>Element</th>
<th>Direction</th>
<th>No. of Units</th>
<th>Width (m)</th>
<th>Persons per inch</th>
<th>Persons per minute</th>
<th>Total people per unit</th>
<th>Total people per minute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concourse Center:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concourse Corridor - Point of Safety</td>
<td></td>
<td>1</td>
<td>540</td>
<td>2.08</td>
<td>1123</td>
<td>1123</td>
<td></td>
</tr>
<tr>
<td>Turnstile</td>
<td></td>
<td>10</td>
<td>25</td>
<td></td>
<td>25</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Gate</td>
<td></td>
<td>2</td>
<td>60</td>
<td></td>
<td>120</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>370</td>
<td></td>
</tr>
</tbody>
</table>

(Capacity of Turnstile & Gates)

<table>
<thead>
<tr>
<th>Element</th>
<th>Direction</th>
<th>No. of Units</th>
<th>Width (m)</th>
<th>Persons per inch</th>
<th>Persons per minute</th>
<th>Total people per unit</th>
<th>Total people per minute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concourse: West Emergency Stairway Level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergency Stairway No. 5 (West)</td>
<td>Up</td>
<td>1</td>
<td>48</td>
<td>1.31</td>
<td>63</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Emergency Stairway No. 7 (West)</td>
<td>Up</td>
<td>1</td>
<td>60</td>
<td>1.31</td>
<td>79</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>Towards Concourse Center alt. rou. — Single Leaf Door</td>
<td>Down</td>
<td>1</td>
<td>36</td>
<td>1.31</td>
<td>60</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Corridor</td>
<td>Down</td>
<td>1</td>
<td>36</td>
<td>1.31</td>
<td>60</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Single Leaf Door</td>
<td>Down</td>
<td>1</td>
<td>36</td>
<td>1.31</td>
<td>60</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Corridor</td>
<td>Down</td>
<td>1</td>
<td>48</td>
<td>2.08</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Two Leaf Door</td>
<td>Down</td>
<td>1</td>
<td>72</td>
<td>2.08</td>
<td>150</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>370</td>
<td></td>
</tr>
</tbody>
</table>

(Subtract 12" for each sidewall, 62-2"12)

<table>
<thead>
<tr>
<th>Element</th>
<th>Direction</th>
<th>No. of Units</th>
<th>Width (m)</th>
<th>Persons per inch</th>
<th>Persons per minute</th>
<th>Total people per unit</th>
<th>Total people per minute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concourse: East Emergency Stairway Level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergency Stairway No. 6 (East)</td>
<td>Up</td>
<td>1</td>
<td>48</td>
<td>1.31</td>
<td>63</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Emergency Stairway No. 8 (East)</td>
<td>Up</td>
<td>1</td>
<td>60</td>
<td>1.31</td>
<td>79</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>Towards Concourse Center alt. rou. — Single Leaf Door</td>
<td>Down</td>
<td>1</td>
<td>36</td>
<td>1.31</td>
<td>60</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Corridor</td>
<td>Down</td>
<td>1</td>
<td>36</td>
<td>1.31</td>
<td>60</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Single Leaf Door</td>
<td>Down</td>
<td>1</td>
<td>36</td>
<td>1.31</td>
<td>60</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Corridor</td>
<td>Down</td>
<td>1</td>
<td>48</td>
<td>2.08</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Two Leaf Door</td>
<td>Down</td>
<td>1</td>
<td>72</td>
<td>2.08</td>
<td>150</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>370</td>
<td></td>
</tr>
</tbody>
</table>

(Subtract 12" for each sidewall, 61-2"12)

<table>
<thead>
<tr>
<th>Element</th>
<th>Direction</th>
<th>No. of Units</th>
<th>Width (m)</th>
<th>Persons per inch</th>
<th>Persons per minute</th>
<th>Total people per unit</th>
<th>Total people per minute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concourse to North Entrance Plaza Level:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Escalator No. 1a</td>
<td>Up</td>
<td>1</td>
<td>49</td>
<td>1.31</td>
<td>63</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Star No. 1</td>
<td>Up</td>
<td>1</td>
<td>66</td>
<td>1.31</td>
<td>86</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>Escalator No. 1b</td>
<td>Up</td>
<td>0</td>
<td>48</td>
<td>1.31</td>
<td>63</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Total Stairway & Escalator:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>214</td>
<td></td>
</tr>
</tbody>
</table>

(1 Escalator out of service)

<table>
<thead>
<tr>
<th>Element</th>
<th>Direction</th>
<th>No. of Units</th>
<th>Width (m)</th>
<th>Persons per inch</th>
<th>Persons per minute</th>
<th>Total people per unit</th>
<th>Total people per minute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concourse to South Entrance Plaza Level:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Star No. 2</td>
<td>Up</td>
<td>1</td>
<td>66</td>
<td>1.31</td>
<td>86</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>Star No. 2</td>
<td>Up</td>
<td>1</td>
<td>66</td>
<td>1.31</td>
<td>86</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>Total Stairway & Escalator:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>173</td>
<td></td>
</tr>
</tbody>
</table>
Egress Capacity

One escalator at each level is assumed to be out of service (per NFPA 130 2010 edition, Section 5.5.6.3.2.6).

Egress Elements:

<table>
<thead>
<tr>
<th>Element</th>
<th>Direction</th>
<th>No. of Units</th>
<th>Width (in)</th>
<th>Persons per inch</th>
<th>Person per minute</th>
<th>Total people per minute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plaza Level Plan:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>West side Exit Hatch 1</td>
<td>1</td>
<td>48</td>
<td>2.08</td>
<td>100</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>North Side Entrance No. 1</td>
<td>1</td>
<td>252</td>
<td>2.08</td>
<td>524</td>
<td></td>
<td>524</td>
</tr>
<tr>
<td>East Side Exit Hatch 2</td>
<td>1</td>
<td>48</td>
<td>2.08</td>
<td>100</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>East Side Entrance No. 2</td>
<td>1</td>
<td>312</td>
<td>2.08</td>
<td>640</td>
<td></td>
<td>640</td>
</tr>
</tbody>
</table>

Assume (Subtract 12" for each sidewalk, 276-2'12)

Assume (Subtract 12" for each sidewalk, 336-2'12)
Passenger Load

Platform

<table>
<thead>
<tr>
<th>Occupant load from ancillary rooms in passenger area</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Platform Occupant Load</td>
<td>866</td>
</tr>
</tbody>
</table>

Egress Capacity (ppm) | Percent | Number of passengers |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Stars & Escalators</td>
<td>234</td>
<td>66.3%</td>
</tr>
<tr>
<td>West Emergency Stairway (No. 5)</td>
<td>60</td>
<td>15.9%</td>
</tr>
<tr>
<td>East Emergency Stairway (No. 6)</td>
<td>60</td>
<td>16.8%</td>
</tr>
<tr>
<td>Total:</td>
<td>100%</td>
<td>866</td>
</tr>
</tbody>
</table>

Concourse

Concourse West Area Occupant Load-

<table>
<thead>
<tr>
<th>Single Door (Twa. Concourse Center)</th>
<th>60</th>
<th>43.3%</th>
<th>63</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total:</td>
<td>100%</td>
<td>146</td>
<td></td>
</tr>
</tbody>
</table>

Concourse East Area Occupant Load-

<table>
<thead>
<tr>
<th>Single Door (Twa. Concourse Center)</th>
<th>60</th>
<th>43.3%</th>
<th>63</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total:</td>
<td>100%</td>
<td>146</td>
<td></td>
</tr>
</tbody>
</table>

Concourse Center Area Occupant Load-

<table>
<thead>
<tr>
<th>Occupant load from ancillary rooms on concourse level</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Concourse Center Area Occupant Load</td>
<td>710</td>
</tr>
</tbody>
</table>

Egress Capacity (ppm) | Percent | Number of passengers |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Concourse Stairway & Escalator (No. 1)</td>
<td>236</td>
<td>57.7%</td>
</tr>
<tr>
<td>Concourse Stairway & Escalator (No. 2)</td>
<td>173</td>
<td>42.3%</td>
</tr>
<tr>
<td>Total:</td>
<td>100%</td>
<td>710</td>
</tr>
</tbody>
</table>
Route 1
Express direction: Passenger starting from 30 ft East of Emergency Stair No. 5, travelling to concourse level and street level using stairway No. 7 and Emergency Exit Hatch No. 1.

Walking Time For The Longest Exit Route

<table>
<thead>
<tr>
<th>Stage</th>
<th>ft</th>
<th>min</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>On Platform</td>
<td>44</td>
<td>0.35</td>
<td>R5-A-1/10</td>
</tr>
<tr>
<td>Platform to Concourse, Elevation</td>
<td>16</td>
<td>0.40</td>
<td>R5-A-2/21</td>
</tr>
<tr>
<td>Concourse Level, Point of Safety</td>
<td>50</td>
<td>0.40</td>
<td>R5-A-11/11</td>
</tr>
<tr>
<td>Concourse Level-2</td>
<td>47</td>
<td>0.38</td>
<td>R5-A-11/12</td>
</tr>
<tr>
<td>Concourse To Plaza Level, Elevation</td>
<td>56</td>
<td>0.56</td>
<td>R5-A-2/26</td>
</tr>
<tr>
<td>To safe area</td>
<td>10</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>T (total walking time) = summation of T1 through T6</td>
<td></td>
<td>2.17</td>
<td></td>
</tr>
</tbody>
</table>

Stairs from Platform to Concourse

Platform occupant load	666
Exit capacity	355
Q1 (platform clearing time) = occupant load / exit capacity	2.44 minutes
W1 (waiting time) = Q1 - T1	2.00 minutes

West Emerg. Stairway Corridor (Beyond West End door into corridor)

Platform occupant load	146
Exit capacity	79
Q2 (platform clearing time) = occupant load / exit capacity	1.85 minutes
W2 (waiting time) = Q2 - Q1	2.00 minutes

West Emergency Stairway (To Concourse Level)

Occupant load	146
Exit capacity	63
Q3 (clearing time) = occupant load / exit capacity	2.33 minutes
Max. clearing Time	2.44
W3 (waiting time) = Q3 - Max. Time	2.00 minutes

(Congress) West corridor -1

Occupant load	146
Exit capacity	75
Q4 (clearing time) = occupant load / exit capacity	1.96 minutes
Max. clearing Time	2.44
W4 (waiting time) = Q4 - Max. time	2.00 minutes

(To Roof Level) Stairway

Occupant load	146
Exit capacity	79
Q5 (clearing time) = occupant load / exit capacity	1.86 minutes
Max. clearing Time	2.44
W5 (waiting time) = Q5 - Max. Time	2.00 minutes

Plaza Level - Emerg. Exit Hatch, 1

Occupant load	146
Exit capacity	100
Q6 (clearing time) = occupant load / exit capacity	1.47 minutes
Max. clearing Time	2.44
W6 (waiting time) = Q6 - Max. Time	2.00 minutes

Total Time to reach Point of Safety
Total exit time to street = T + W1 + W2 + W3 + W4 + W5 + W6

5.25 minutes under 6 minutes

4.26 minutes
(Refer RI-A-101/110/111/112/113 Mark-up Drawings for Plan Dimension)
(Refer RI-A-201/202/206 Mark-up Drawings for Elevation Dimension)
(Refer AI-036 for Exit Hatch Details)

Route 1A

Egress direction: Passenger starting from 50 ft East of Emergency Stair No. 5, travelling to concourse level and street level using stairway No. 7 and Emergency Exit Hatch No. 1.

Assuming passengers split at every level depending upon the egress element capacity

<table>
<thead>
<tr>
<th>Walking Time For The Longest Exit Route</th>
</tr>
</thead>
<tbody>
<tr>
<td>On Platform</td>
</tr>
<tr>
<td>Platform to Concourse, Elevation</td>
</tr>
<tr>
<td>Concourse Level-Point of Safety</td>
</tr>
<tr>
<td>Concourse Level-2</td>
</tr>
<tr>
<td>Concourse To Plaza Level, Elevator</td>
</tr>
<tr>
<td>To safe area</td>
</tr>
</tbody>
</table>

T (total walking time) = summation of T1 through T6

<table>
<thead>
<tr>
<th>Stairs (from Platform to Concourse)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platform occupant load</td>
</tr>
<tr>
<td>Exit capacity</td>
</tr>
<tr>
<td>Q1 (platform clearing time) = occupant load / exit capacity</td>
</tr>
<tr>
<td>W1 (waiting time) = Q1 - T1</td>
</tr>
</tbody>
</table>

West Emerg. Stairway Corridor (Beyond West End door into corridor)

Platform occupant load	145
Exit capacity	79
Q2 (platform clearing time) = occupant load / exit capacity	1.85 minutes
W2 (waiting time) = Q2 - Q1	0.00 minutes under 4 minutes

West Emergency Stairway (To Concourse Level)

Occupant load	146
Exit capacity	53
Q3 (clearing time) = occupant load / exit capacity	2.33 minutes
Max. clearing Time	2.44
W3 (waiting time) = Q3 - Max. Time	0.00 minutes

Concourse-West corridor -1

Occupant load	140
Exit capacity	75
Q4 (clearing time) = occupant load / exit capacity	1.35 minutes
Max. clearing Time	2.44
W4 (waiting time) = Q4 - Max time	0.00 minutes

To Roof Level-Stairway

Occupant load	83
Exit capacity	79
Q5 (clearing time) = occupant load / exit capacity	1.06 minutes
Max Flow Time	2.44
W5 (waiting time) = Q5 - Max. Time	0.00 minutes

Plaza Level-Emerg. Exit Hatch 1

Occupant load	83
Exit capacity	100
Q6 (clearing time) = occupant load / exit capacity	Assume
Max Flow Time	2.44
W6 (waiting time) = Q6 - Max. Time	0.00 minutes

Total Time to reach Point of Safety

Total exit time to street = T + W1 + W2 + W3 + W4 + W5 + W6

| Total exit time to street | 4.26 minutes under 5 minutes |

REGIONAL CONNECTOR TRANSIT CORRIDOR PROJECT

May 22, 2012

Page A-58
(Refer 55-A-101/110/111/112/ 1113 Mark-up Drawings for Plan Dimension)
(Refer 55-A-201/202/206 Mark-up Drawings for Elevation Dimension)
(Refer 48-036 for Exit Hatch Details)

Routa:
Egress direction: Passenger starting from 3rd floor of Emergency Stair No. 5, travelling to concourse level and street level using stairway No. 2 and South Exit.

Walking Time For The Longest Exit Route

<table>
<thead>
<tr>
<th>Route</th>
<th>ft</th>
<th>fpm</th>
<th>Minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>On Platform</td>
<td>44</td>
<td>124</td>
<td>0.35</td>
</tr>
<tr>
<td>Platform to Concourse, Elevation</td>
<td>16</td>
<td>60</td>
<td>0.30</td>
</tr>
<tr>
<td>Concourse Level-Point of Safety</td>
<td>50</td>
<td>124</td>
<td>0.40</td>
</tr>
<tr>
<td>Concourse Level-2</td>
<td>244</td>
<td>124</td>
<td>1.97</td>
</tr>
<tr>
<td>Concourse To Plaza Level, Elevation</td>
<td>23</td>
<td>60</td>
<td>0.38</td>
</tr>
<tr>
<td>To safe area</td>
<td>10</td>
<td>124</td>
<td>0.08</td>
</tr>
<tr>
<td>Total walking time</td>
<td></td>
<td></td>
<td>3.75</td>
</tr>
</tbody>
</table>

Stairs (from Platform to Concourse):

- Platform occupant load = ade
- Exit capacity = 356
- Q1 (platform clearing time) = occupant load / exit capacity = 2.44 minutes
- W1 (waiting time) = Q1 - T1 = 0.60 minutes

West Emerg. Stairway Corridor (Beyond West End door into corridor):

- Platform occupant load = ade
- Exit capacity = 79
- Q2 (platform clearing time) = occupant load / exit capacity = 1.85 minutes
- W2 (waiting time) = Q2 - Q1 = 0.00 minutes
- **Total walking time = under 4 minutes**

West Emergency Stairway (To Concourse Level):

- Occupant load = ade
- Exit capacity = 63
- Q3 (clearing time) = occupant load / exit capacity = 2.33 minutes
- Max. clearing Time = 2.44
- W3 (waiting time) = Q3 - Max. Time = 0.00 minutes

[Concourse]-West Corridor 1:

- Occupant load = ade
- Exit capacity = 75
- Q4 (clearing time) = occupant load / exit capacity = 1.95 minutes
- Max. clearing Time = 2.44
- W4 (waiting time) = Q4 - Max. Time = 0.00 minutes

[Concourse]-West Single Door 1:

- Occupant load = ade
- Exit capacity = 63
- Q5 (clearing time) = occupant load / exit capacity = 1.06 minutes
- Max. clearing Time = 2.44
- W5 (waiting time) = Q5 - Max. Time = 0.00 minutes

[Concourse]-West Corridor 2:

- Occupant load = ade
- Exit capacity = 100
- Q6 (clearing time) = occupant load / exit capacity = 0.63 minutes
- Max. clearing Time = 2.44
- W6 (waiting time) = Q6 - Max. Time = 0.00 minutes

[Concourse]-West Double Door 3:

- Occupant load = ade
- Exit capacity = 127
- Q7 (clearing time) = occupant load / exit capacity = 0.85 minutes
- Max. clearing Time = 2.44
- W7 (waiting time) = Q7 - Max. Time = 0.00 minutes
Egress direction: Passenger starting from 30 ft East of Emergency Stair No. 5, travelling to concourse level and street level using stairway No. 2 and South Exit.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Concourse Level Southern Stairway</td>
<td>To Plaza Level</td>
</tr>
<tr>
<td>Occupant load</td>
<td>427</td>
</tr>
<tr>
<td>Exit capacity</td>
<td>173</td>
</tr>
<tr>
<td>Q5 (clearing time) = occupant load / exit capacity</td>
<td>2.47 minutes</td>
</tr>
<tr>
<td>Max. clearing Time</td>
<td>2.44</td>
</tr>
<tr>
<td>W0 (waiting time) = Q5 - Max. Time</td>
<td>0.03 minutes</td>
</tr>
<tr>
<td>Total Time to reach Point of Safety</td>
<td>3.25 under 6 minutes</td>
</tr>
<tr>
<td>Total exit time to street = T + W1 + W2 + W3 + W4 +...+W8</td>
<td>6.90 minutes</td>
</tr>
</tbody>
</table>
Walking Time For The Longest Exit Route

<table>
<thead>
<tr>
<th>Step Description</th>
<th>ft</th>
<th>from</th>
<th>Minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>On Platform</td>
<td>T1</td>
<td>41</td>
<td>0.33</td>
</tr>
<tr>
<td>Platform to Concourse, Elevation</td>
<td>T2</td>
<td>160</td>
<td>0.70</td>
</tr>
<tr>
<td>Concourse Level-Point of Safety</td>
<td>T3</td>
<td>27</td>
<td>1.11</td>
</tr>
<tr>
<td>Concourse Level-2</td>
<td>T4</td>
<td>204</td>
<td>1.55</td>
</tr>
<tr>
<td>Concourse Level To Plaza Level, Elevation</td>
<td>T5</td>
<td>22</td>
<td>0.55</td>
</tr>
<tr>
<td>To Street Area</td>
<td>T6</td>
<td>10</td>
<td>0.08</td>
</tr>
<tr>
<td>Total (Total walking time) = summation of T1 through T6</td>
<td></td>
<td></td>
<td>3.22</td>
</tr>
</tbody>
</table>

Stairs (from Platform to Concourse)
- Occupant load = 868
- Exit capacity = 356
- Q1 (platform clearing time) = occupant load / exit capacity
- W1 (waiting time) = Q1 - T1
- Time: 2.44 minutes

Concourse: Central Corridor - Point of Safety
- Occupant load = 710
- Exit capacity = 1123
- Q2 (clearing time) = occupant load / exit capacity
- W2 (waiting time) = Q2 - Q1
- Time: 0.63 minutes

Concourse: Turnstile & Gates
- Occupant load = 710
- Exit capacity = 370
- Q3 (clearing time) = occupant load / exit capacity
- Max. clearing time
- W3 (waiting time) = Q3 - Max. Time
- Time: 1.92 minutes

Concourse: To Plaza Level
- Occupant load = 410
- Exit capacity = 236
- Q4 (clearing time) = occupant load / exit capacity
- Max. clearing time
- W4 (waiting time) = Q4 - Max. Time
- Time: 1.74 minutes

Total Time to Reach Point of Safety
- Total exit time to street = T + W1 + W2 + W3 + W4
- Time: 3.06 minutes

Total Exit Time to Street
- Time: 5.33 minutes
(Refer R5-A-10/11/111/112/1113 Mark-up Drawings for Plan Dimension)
(Refer R5-A-20/202/206 Mark-up Drawings for Elevation Dimension)
(Refer AS-006 for Exit Hatch Details)

Route 4
Egress direction: Passenger starting from 85 ft east of Escalator No. 3, travelling to concourse level and street level using Turnstiles, Stair No. 2, and South exit.

Walking Time For The Longest Exit Route

<table>
<thead>
<tr>
<th></th>
<th>ft</th>
<th>fpm</th>
<th>Minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>On Platform</td>
<td>T1</td>
<td>97</td>
<td>124</td>
</tr>
<tr>
<td>Platform to Concourse, Elevation</td>
<td>T2</td>
<td>16</td>
<td>40</td>
</tr>
<tr>
<td>Concourse Level-Point of Safety</td>
<td>T3</td>
<td>27</td>
<td>124</td>
</tr>
<tr>
<td>Concourse Level-2</td>
<td>T4</td>
<td>145</td>
<td>124</td>
</tr>
<tr>
<td>Concourse Level To plaza Level, Elevation</td>
<td>T5</td>
<td>23</td>
<td>40</td>
</tr>
<tr>
<td>To street area</td>
<td>T6</td>
<td>10</td>
<td>124</td>
</tr>
<tr>
<td>T (total walking time) = summation of T1 through T6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stairs (from Platform to Concourse)

- Platform occupant load = 869
- Exit capacity = 366
- Q1 (platform clearing time) = occupant load / exit capacity = 2.44 minutes
- W1 (waiting time) = Q1 - T1 = 1.66 minutes under 4 minutes

(Concourse) central Corridor - Point of Safety

- Occupant load = 710
- Exit capacity = 1123
- Q2 (clearing time) = occupant load / exit capacity = 0.63 minutes
- W2 (waiting time) = Q2 - Q1 = 0.00 minutes

(Concourse) - Turnstile & Gate

- Occupant load = 710
- Exit capacity = 370
- Q3 (clearing time) = occupant load / exit capacity = 1.92 minutes
- Max. clearing Time = 2.44
- W3 (waiting time) = Q3 - Max. Time = 0.00 minutes

(Concourse) - To Plaza Level

- Occupant load = 427
- Exit capacity = 173
- Q4 (clearing time) = occupant load / exit capacity = 2.47 minutes
- Max. clearing Time = 2.44
- W4 (waiting time) = Q4 - Max. Time = 0.03 minutes

Total Time to reach Point of Safety

- Total time to street = T + W1 + W2 + W3 + W4
- Total exit time to street = 3.06 under 6 minutes
- 4.91 minutes
Egress direction: Passenger starting from 85 ft east of Escalator No. 3, travelling to concourse level and street level using Turnstiles, Stair No. 1, and North exit.

Walking Time For The Longest Exit Route

<table>
<thead>
<tr>
<th>Route</th>
<th>ft</th>
<th>from</th>
<th>Minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>On Platform</td>
<td>T1</td>
<td>97</td>
<td>124</td>
</tr>
<tr>
<td>Platform to Concourse Elevation</td>
<td>T2</td>
<td>16</td>
<td>40</td>
</tr>
<tr>
<td>Concourse Level Point of Safety</td>
<td>T3</td>
<td>27</td>
<td>124</td>
</tr>
<tr>
<td>Concourse Level-2</td>
<td>T4</td>
<td>162</td>
<td>124</td>
</tr>
<tr>
<td>Concourse Level To pizza Level Elevation</td>
<td>T5</td>
<td>22</td>
<td>40</td>
</tr>
<tr>
<td>To street area</td>
<td>T6</td>
<td>10</td>
<td>124</td>
</tr>
<tr>
<td>T (total waking time) = summation of T1 through T6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stairs (from Platform to Concourse)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Platform occupant load</td>
<td>568</td>
</tr>
<tr>
<td>Exit capacity</td>
<td>356</td>
</tr>
<tr>
<td>Q1 (platform clearing time) = occupant load / exit capacity</td>
<td>2.44 minutes</td>
</tr>
<tr>
<td>W1 (waiting time) = Q1 - T1</td>
<td>1.66 minutes</td>
</tr>
</tbody>
</table>

(Concourse) central Corridor - Point of Safety

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupant load</td>
<td>710</td>
</tr>
<tr>
<td>Exit capacity</td>
<td>1123</td>
</tr>
<tr>
<td>Q2 (clearing time) = occupant load / exit capacity</td>
<td>0.63 minutes</td>
</tr>
<tr>
<td>W2 (waiting time) = Q2 - Q1</td>
<td>0.00 minutes</td>
</tr>
</tbody>
</table>

(Concourse) Turnstile & Gates

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupant load</td>
<td>710</td>
</tr>
<tr>
<td>Exit capacity</td>
<td>370</td>
</tr>
<tr>
<td>Q3 (clearing time) = occupant load / exit capacity</td>
<td>1.92 minutes</td>
</tr>
<tr>
<td>Max. clearing Time</td>
<td>2.44</td>
</tr>
<tr>
<td>W3 (waiting time) = Q3 - Max. Time</td>
<td>0.00 minutes</td>
</tr>
</tbody>
</table>

(Concourse) To Plaza Level

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupant load</td>
<td>410</td>
</tr>
<tr>
<td>Exit capacity</td>
<td>235</td>
</tr>
<tr>
<td>Q4 (clearing time) = occupant load / exit capacity</td>
<td>1.74 minutes</td>
</tr>
<tr>
<td>Max. clearing Time</td>
<td>2.44</td>
</tr>
<tr>
<td>W4 (waiting time) = Q4 - Max. Time</td>
<td>0.00 minutes</td>
</tr>
</tbody>
</table>

Total Time to reach Point of Safety

5.64 | under 6 minutes

Total exit time to street = T + W1 + W2 + W3 + W4

4.99 minutes
Egress direction: Passenger starting from 80 ft west of Emergency Stair No. 6, travelling to concourse level and street level using stairway No. 6, and exit hatch No. 2.

<table>
<thead>
<tr>
<th>Walking Time For The Longest Exit Route</th>
<th>ft</th>
<th>spm</th>
<th>Minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>On Platform</td>
<td>92</td>
<td>124</td>
<td>0.74</td>
</tr>
<tr>
<td>Platform to Concourse, Elevation</td>
<td>16.5</td>
<td>40</td>
<td>0.41</td>
</tr>
<tr>
<td>Concourse Level-Point of Safety</td>
<td>36</td>
<td>124</td>
<td>0.29</td>
</tr>
<tr>
<td>Concourse Level-2</td>
<td>9</td>
<td>124</td>
<td>0.06</td>
</tr>
<tr>
<td>Concourse Level To Plaza Level, Elevation</td>
<td>20.66</td>
<td>40</td>
<td>0.52</td>
</tr>
<tr>
<td>To safe area</td>
<td>10</td>
<td>124</td>
<td>0.00</td>
</tr>
<tr>
<td>T (total waking time)</td>
<td></td>
<td></td>
<td>2.11</td>
</tr>
</tbody>
</table>

Stairs (from Platform to Concourse)

- Platform occupant load = 665
- Exit capacity = 366
- Q1 (platform clearing time) = occupant load / exit capacity
- W1 (waiting time) = Q1 - T1

- Q2 (platform clearing time) = occupant load / exit capacity
- W2 (waiting time) = Q2 - Q1

- East Emergency Stairway (Beyond East End door into corridor)
 - Platform occupant load = 146
 - Exit capacity = 158
 - Q3 (clearing time) = occupant load / exit capacity
 - W3 (waiting time) = Q3 - Max. Time

- East Emergency Stairway (To Concourse Level)
 - Occupant load = 146
 - Exit capacity = 63
 - Q3 (clearing time) = occupant load / exit capacity
 - Max. clearing Time = 2.33 minutes
 - W3 (waiting time) = Q3 - Max. Time

- (Concourse)-East corridor -1
 - Occupant load = 146
 - Exit capacity = 119
 - Q4 (clearing time) = occupant load / exit capacity
 - Max. clearing Time = 2.44
 - W4 (waiting time) = Q4 - Max. time

- (To Roof Level)-Stairway
 - Occupant load = 146
 - Exit capacity = 79
 - Q5 (clearing time) = occupant load / exit capacity
 - Max. clearing Time = 1.56 minutes
 - W5 (waiting time) = Q5 - Max Time

- Plaza Level -Emergency Exit Hatch 2
 - Occupant load = 146
 - Exit capacity = 100
 - Q6 (clearing time) = occupant load / exit capacity
 - Max. clearing Time = 2.44
 - W6 (waiting time) = Q6 - Max Time

Total Time to reach Point of Safety: 3.14 minutes

Total exit time to street: T + W1 + W2 + W3 + W4 + W5 + W6 = 3.80 minutes
Regional Connector Transit Corridor Project

Egress direction: Passenger starting from 80 ft west of Emergency Stair No. 6, travelling to concourse level and street level using stairway No. 8, and Exit Hatch No. 2.

Assuming passengers split at every level depending upon the egress element capacity.

Walking Time for The Longest Exit Route

<table>
<thead>
<tr>
<th>Location</th>
<th>ft</th>
<th>s/min</th>
<th>Minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>On Platform</td>
<td>T1</td>
<td>92</td>
<td>124</td>
</tr>
<tr>
<td>Platform to Concourse, Elevation</td>
<td>T2</td>
<td>17</td>
<td>40</td>
</tr>
<tr>
<td>Concourse Level - Point of Safety</td>
<td>T3</td>
<td>36</td>
<td>124</td>
</tr>
<tr>
<td>Concourse Level - 2</td>
<td>T4</td>
<td>8</td>
<td>124</td>
</tr>
<tr>
<td>Concourse Level - To Plaza Level, Elevation</td>
<td>T5</td>
<td>21</td>
<td>40</td>
</tr>
<tr>
<td>To Safe Area</td>
<td>T6</td>
<td>10</td>
<td>124</td>
</tr>
<tr>
<td>T (total walking time) = summation of T1 through T6</td>
<td></td>
<td></td>
<td>2.11</td>
</tr>
</tbody>
</table>

Stairs (from Platform to Concourse)

<table>
<thead>
<tr>
<th>Component</th>
<th>Occupant Load</th>
<th>Exit Capacity</th>
<th>Q1 (platform clearing time)</th>
<th>W1 (waiting time)</th>
<th>Q1 - T1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platform occupant load</td>
<td>868</td>
<td>356</td>
<td>2.44 minutes</td>
<td>1.70 minutes</td>
<td></td>
</tr>
<tr>
<td>Q1 (platform clearing time)</td>
<td>868</td>
<td>356</td>
<td>2.44 minutes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W1 (waiting time)</td>
<td>868</td>
<td>356</td>
<td>2.44 minutes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

East Emergency Stairway Corridor (To Concourse Level)

<table>
<thead>
<tr>
<th>Component</th>
<th>Occupant Load</th>
<th>Exit Capacity</th>
<th>Q2 (platform clearing time)</th>
<th>W2 (waiting time)</th>
<th>Q2 - Q1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platform occupant load</td>
<td>146</td>
<td>158</td>
<td>6.33 minutes</td>
<td>0.00 minutes</td>
<td>2.44</td>
</tr>
<tr>
<td>Q2 (platform clearing time)</td>
<td>146</td>
<td>158</td>
<td>6.33 minutes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W2 (waiting time)</td>
<td>146</td>
<td>158</td>
<td>6.33 minutes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

East Emergency Stairway (To Concourse Level)

<table>
<thead>
<tr>
<th>Component</th>
<th>Occupant Load</th>
<th>Exit Capacity</th>
<th>Q3 (clearing time)</th>
<th>Max. Clearing Time</th>
<th>W3 (waiting time)</th>
<th>Q3 - Max. Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupant load</td>
<td>146</td>
<td>158</td>
<td>2.33 minutes</td>
<td>2.44</td>
<td>0.00 minutes</td>
<td></td>
</tr>
<tr>
<td>Q3 (clearing time)</td>
<td>146</td>
<td>158</td>
<td>2.33 minutes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W3 (waiting time)</td>
<td>146</td>
<td>158</td>
<td>2.33 minutes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Concourse) - East Corridor-1

<table>
<thead>
<tr>
<th>Component</th>
<th>Occupant Load</th>
<th>Exit Capacity</th>
<th>Q4 (clearing time)</th>
<th>Max. Clearing Time</th>
<th>W4 (waiting time)</th>
<th>Q4 - Max. time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupant load</td>
<td>146</td>
<td>119</td>
<td>1.23 minutes</td>
<td>2.44</td>
<td>0.00 minutes</td>
<td></td>
</tr>
<tr>
<td>Q4 (clearing time)</td>
<td>146</td>
<td>119</td>
<td>1.23 minutes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W4 (waiting time)</td>
<td>146</td>
<td>119</td>
<td>1.23 minutes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(To Roof Level) - Stairway

<table>
<thead>
<tr>
<th>Component</th>
<th>Occupant Load</th>
<th>Exit Capacity</th>
<th>Q5 (clearing time)</th>
<th>Max. Clearing Time</th>
<th>W5 (waiting time)</th>
<th>Q5 - Max. Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupant load</td>
<td>83</td>
<td>79</td>
<td>1.06 minutes</td>
<td>2.44</td>
<td>0.00 minutes</td>
<td></td>
</tr>
<tr>
<td>Q5 (clearing time)</td>
<td>83</td>
<td>79</td>
<td>1.06 minutes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W5 (waiting time)</td>
<td>83</td>
<td>79</td>
<td>1.06 minutes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Plaza Level - Emerg. Exit Hatch 2

<table>
<thead>
<tr>
<th>Component</th>
<th>Occupant Load</th>
<th>Exit Capacity</th>
<th>Q6 (clearing time)</th>
<th>Max. Clearing Time</th>
<th>W6 (waiting time)</th>
<th>Q6 - Max. Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupant load</td>
<td>83</td>
<td>100</td>
<td>0.83 minutes</td>
<td>2.44</td>
<td>0.00 minutes</td>
<td></td>
</tr>
<tr>
<td>Q6 (clearing time)</td>
<td>83</td>
<td>100</td>
<td>0.83 minutes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W6 (waiting time)</td>
<td>83</td>
<td>100</td>
<td>0.83 minutes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Time to Reach Point of Safety

Total exit time to street = T + W1 + W2 + W3 + W4 + W5 + W6

<table>
<thead>
<tr>
<th>Time (minutes)</th>
<th>Total Exit Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.14</td>
<td>Under 6 minutes</td>
</tr>
</tbody>
</table>

Total exit time to street = T + W1 + W2 + W3 + W4 + W5 + W6

<table>
<thead>
<tr>
<th>Time (minutes)</th>
<th>Total Exit Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.80</td>
<td>Under 6 minutes</td>
</tr>
</tbody>
</table>
Regional Connector Transit Corridor Project

Routes

Egress direction: Passenger starting from 80 ft west of Emergency Stair No. 5, travelling to concourse level and street level using stairway No. 2 (south exit)

Walking Time For The Longest Exit Route

<table>
<thead>
<tr>
<th>Route Description</th>
<th>ft</th>
<th>ftm</th>
<th>Minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>On Platform</td>
<td>92</td>
<td>124</td>
<td>0.74</td>
</tr>
<tr>
<td>Platform to Concourse, Elevation</td>
<td>16.5</td>
<td>40</td>
<td>0.41</td>
</tr>
<tr>
<td>Concourse Level-Point of Safety</td>
<td>96</td>
<td>124</td>
<td>0.30</td>
</tr>
<tr>
<td>Concourse Level-2</td>
<td>164</td>
<td>124</td>
<td>1.32</td>
</tr>
<tr>
<td>Concourse To Plaza, Level, Elevation</td>
<td>23.01</td>
<td>40</td>
<td>0.55</td>
</tr>
<tr>
<td>To safe area</td>
<td>10</td>
<td>124</td>
<td>0.08</td>
</tr>
<tr>
<td>T (total walking time) = summation of T1 through T6</td>
<td></td>
<td></td>
<td>3.42</td>
</tr>
</tbody>
</table>

Stairs (from Platform to Concourse)

- Platform occupant load = 668
- Exit capacity = 366
- Q1 (platform clearing time) = occupant load / exit capacity
- W1 (waiting time) = Q1 - T1 = 1.70 minutes

East Emerg. Stairway Corridor (Beyond East End door into corridor)

- Platform occupant load = 146
- Exit capacity = 150
- Q2 (platform clearing time) = occupant load / exit capacity
- W2 (waiting time) = Q2 - Q1 = 0.00 minutes under 4 minutes

East Emergency Stairway (To Concourse Level)

- Occupant load = 146
- Exit capacity = 119
- Q3 (clearing time) = occupant load / exit capacity
- Max. clearing Time = 2.44
- W3 (waiting time) = Q3 - Max. Time = 0.00 minutes

[Concourse]-East Corridor-1

- Occupant load = 146
- Exit capacity = 119
- Q4 (clearing time) = occupant load / exit capacity
- Max. clearing Time = 1.23 minutes
- W4 (waiting time) = Q4 - Max. Time = 0.00 minutes

[Concourse]-East Single Door-1

- Occupant load = 63
- Exit capacity = 60
- Q5 (clearing time) = occupant load / exit capacity
- Max. clearing Time = 1.06 minutes
- W5 (waiting time) = Q5 - Max. Time = 0.00 minutes

[Concourse]-East Corridor-2

- Occupant load = 63
- Exit capacity = 50
- Q6 (clearing time) = occupant load / exit capacity
- Max. clearing Time = 1.27 minutes
- W6 (waiting time) = Q6 - Max. Time = 0.00 minutes

[Concourse]-Double Door-3

- Occupant load = 127
- Exit capacity = 150
- Q7 (clearing time) = occupant load / exit capacity
- Max. clearing Time = 0.06 minutes
- W7 (waiting time) = Q7 - Max. Time = 0.00 minutes
(Refer R5-A-101/10/11/11/ 1113 Mark-up Drawings for Plan Dimension)
(Refer R5-A-301/302/306 Mark-up Drawings for Elevation Dimension)
(Refer AS-032 for Exit Hatch Details)

Route 6

Egress direction: Passenger starting from 60 ft west of Emergency Stair No. 6, travelling to concourse level and street level using stairway No. 2 (south exit)

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupant load =</td>
<td>427</td>
</tr>
<tr>
<td>Exit capacity =</td>
<td>173</td>
</tr>
<tr>
<td>Q8 (clearing time) = occupant load / exit capacity</td>
<td>2.47 minutes</td>
</tr>
<tr>
<td>Max Flow Time =</td>
<td>2.44</td>
</tr>
<tr>
<td>W8 (waiting time) = Q8 - Max. Time</td>
<td>0.03 minutes</td>
</tr>
<tr>
<td>Total Time to reach Point of Safety</td>
<td>3.14 under 6 minutes</td>
</tr>
<tr>
<td>Total exit time to street = T + W1 + W2 + W3 + W4 +...+W8</td>
<td>5.15 minutes</td>
</tr>
</tbody>
</table>
1st and Central Station: Passenger Load
Background:
Regional connector line 1st / Central Ave Station total egress time is to be calculated based on NFPA-130 procedure to determine the required no. of street entrances to station for EIS.

Purpose:
To calculate the total platform occupant load for 1st / Central Ave Station based on NFPA 130 assumptions and given Link Loads.

References
1.) NFPA-30 (2010 Edition)
2.) EW Peak Hourly Load Diagram
3.) NS Long Peak Hourly Load Diagram
4.) NS Short Peak Hourly Load Diagram
5) Calc-001
6) Email from Gulzar Ahmed dated October 12, 2011

Assumptions
1) Only One Train Detraining Passengers in the Peak Direction is considered based on Reference 6
2) Entraining load is based on passengers waiting to board trains on three different lines with a service disruption time of 12 minutes or one missed headway, whichever is higher, for the peak direction. A headway of 2.5 minutes is used for the off-peak direction. A missed headway and service disruption time are not assumed for the off-peak direction.
3.) NS Long and Short line southbound Trains and EW line westbound train utilizes Northside platform track (Say No.1)
4.) NS Long and Short line northbound Trains and EW line eastbound train utilizes Southside platform track (Say No.2)
5) Surge Factor based on Reference 6.

Surge Factor 1.5
<table>
<thead>
<tr>
<th>NS Line (Long)</th>
<th>Southbound</th>
<th>Northbound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link Load</td>
<td>2408</td>
<td>972 Ppl/Peak hr</td>
</tr>
<tr>
<td>Detraining Load</td>
<td>93</td>
<td>97 Ppl/Peak hr</td>
</tr>
<tr>
<td>Entraining Load</td>
<td>35</td>
<td>18 Ppl/Peak hr</td>
</tr>
<tr>
<td>Peak Headway</td>
<td>10 min</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NS Line (Short)</th>
<th>Southbound</th>
<th>Northbound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link Load</td>
<td>1630</td>
<td>871 Ppl/Peak hr</td>
</tr>
<tr>
<td>Detraining Load</td>
<td>89</td>
<td>108 Ppl/Peak hr</td>
</tr>
<tr>
<td>Entraining Load</td>
<td>50</td>
<td>22 Ppl/Peak hr</td>
</tr>
<tr>
<td>Peak Headway</td>
<td>10 min</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EW Line</th>
<th>Westbound</th>
<th>Eastbound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link Load</td>
<td>2031</td>
<td>1001 Ppl/Peak hr</td>
</tr>
<tr>
<td>Detraining Load</td>
<td>200</td>
<td>158 Ppl/Peak hr</td>
</tr>
<tr>
<td>Entraining Load</td>
<td>139</td>
<td>33 Ppl/Peak hr</td>
</tr>
<tr>
<td>Peak Headway</td>
<td>5</td>
<td>min</td>
</tr>
</tbody>
</table>

| Headway Time for Trains | 2.5 min |
Possible Train Schedule

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Trains</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>NSL</td>
</tr>
<tr>
<td>2.5</td>
<td>EW</td>
</tr>
<tr>
<td>5</td>
<td>NSS</td>
</tr>
<tr>
<td>7.5</td>
<td>EW</td>
</tr>
<tr>
<td>10</td>
<td>NSL</td>
</tr>
<tr>
<td>12.5</td>
<td>EW</td>
</tr>
<tr>
<td>15</td>
<td>NSS</td>
</tr>
<tr>
<td>17.5</td>
<td>EW</td>
</tr>
<tr>
<td>20</td>
<td>NSL</td>
</tr>
</tbody>
</table>

NS Line (Long)

<table>
<thead>
<tr>
<th>Peak Headway</th>
<th>10</th>
<th>min</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southbound</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northbound</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Link Load

<table>
<thead>
<tr>
<th>Link Load</th>
<th>Ppl/train headway</th>
<th>Ppl/train headway</th>
</tr>
</thead>
<tbody>
<tr>
<td>401</td>
<td></td>
<td></td>
</tr>
<tr>
<td>162</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NS Line (Short)

<table>
<thead>
<tr>
<th>Peak Headway</th>
<th>10</th>
<th>min</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southbound</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northbound</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Link Load

<table>
<thead>
<tr>
<th>Link Load</th>
<th>Ppl/train headway</th>
<th>Ppl/train headway</th>
</tr>
</thead>
<tbody>
<tr>
<td>272</td>
<td></td>
<td></td>
</tr>
<tr>
<td>145</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EW Line

<table>
<thead>
<tr>
<th>Peak Headway</th>
<th>5</th>
<th>min</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Westbound</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastbound</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Link Load

<table>
<thead>
<tr>
<th>Link Load</th>
<th>Ppl/train headway</th>
<th>Ppl/train headway</th>
</tr>
</thead>
<tbody>
<tr>
<td>169</td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Platform Load

Max. Southbound Entraining Load for Track No. 1 | 224 | Ppl/hr
Average Headway Time | 2.5 | min.
Total Entraining load for Track No. 1 | 10 | Ppl/Train Headway
Max. Northbound Entraining Load for Track No. 2 | 73 | Ppl/hr
Total Entraining load for Track No. 2 | 4 | Ppl/Train Headway

Maximum Train Load (Crush Load) | 795 | ppl

Link Load

Max. Southbound Train Load per headway | 401 | Ppl/Train Headway
Max. Northbound Train peak Headway | 162 | Ppl/Train Headway

Entraining Load
Peak Direction (South Bound) = \left[\text{PEAK 15 MIN. LOAD} \times \text{Surge Factor} \times \text{MAX (2 x HEADWAY OR 12 MIN.)} \right] / 15

Off Peak Direction (North Bound) = \left[\text{OFF PEAK 15 MIN. LOAD} \times \text{Surge Factor} \times \text{HEADWAY} \right] / 15

Total Detraining Load 795 ppl
Total Platform Occupant Load 868 ppl
E-W Line Regional Connector Stations
Peak Hour Boardings and Alightings

WESTBOUND
On Off
154 68

2,031
On Off
139 200

CENTRAL/2ND
On Off
33 43

1,970
On Off
33 43

1,001
On Off
33 43

1,970
On Off
33 43

1,036
On Off
33 43

2ND/SF/RING-BROADWAY
On Off
19 54

1,010
On Off
19 54

Flower between 3rd and 2nd
On Off
131 118

1,973
On Off
131 118

1,323
On Off
131 118

7TH ST/FLOWER
On Off
2,154 869

598 902

3,258
On Off
102 132

1,827
On Off
102 132

PICO BL/FLOWER
On Off
91 87

Reference 2
N-S Line (Short) Siera Madre Villa to Long Beach (Regional Connector Stations)
Peak Hour Boardings and Alightings

SOUTHBOUND
On Off
551 228

On Off
50 89

On Off
19 22

On Off
65 106

On Off
807 554

On Off
55 153

UNION STATION

1,630 785

On Off
50 89

On Off
22 108

On Off
13 45

On Off
30 217

On Off
268 960

On Off
58 71

CENTRAL/2ND

1,591 871

2ND/SPRING-BROADWAY

1,588 903

FLOWER BETWEEN 3RD AND 2ND

1,547 1,090

7TH ST./FLOWER

1,800 1,782

PICO BL/FLOWER

Northbound
On Off
192 221

On Off
22 108

On Off
13 45

On Off
30 217

On Off
268 960

Reference 4
For calculated train load Metro Fire/Life Safety Criteria, Section 2.5.2.1.A has the following requirement.

The following limitations to the calculated train load shall be applied:

a. No more than one train will unload at any one track to a platform during an emergency.
b. The load on any single train is limited to the maximum train capacity.
c. The calculated train load can be no less than the maximum passenger capacity of a single train.

With above limitations the occupant load for emergency exiting calculations for Century City Constellation station will be as follows.

CALCULATED TRAIN LOAD

MAXIMUM CAPACITY OF A SINGLE TRAIN (6 cars per train) = 1446
(61 Seated + 180 Standing = 241 per car x 6 = 1446)

ENTRAINING LOAD

PEAK (Westbound) ENTRAINING LOAD = (PEAK 15 Min. LOAD x MAX (2 x HEADWAY OR 12 MIN.)) / 15
= ([193 x 1.5]/4) x (12/15) = 59

OFF PEAK (Eastbound) ENTRAINING LOAD = (OFF PEAK 15 Min. LOAD x (1 HEADWAY)) / 15
= ([32 x 1.5]/4) x (4/15) = 33

TOTAL ENTRAINING LOAD = 59 + 33 = 92

TOTAL OCCUPANT LOAD FOR CALCULATION = CALCULATED TRAIN LOAD + TOTAL ENTRAINING LOAD

TRUE
Preliminary Fire/Life Safety Assessment
Appendix B – Means of Egress Diagrams

REGIONAL CONNECTOR TRANSIT CORRIDOR PROJECT

May 22, 2012
SECTION LOOKING SOUTH

CONCOURSE LEVEL

PLATFORM LEVEL

2ND/BROADWAY STATION

PUBLIC SPACE

ANXILARY ROOMS

EXIT ACCESS CORRIDOR

ENCLOSED EXIT

EGRESS ELECTION

EGRESS PATH / EXIT PATH

MEANS OF EGRESS
February 17, 2012

REGIONAL CONNECTOR TRANSIT CORRIDOR PROJECT
2ND/BROADWAY STATION

MEANS OF EGRESS

February 17, 2012